Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 44(4)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38533799

RESUMEN

Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Músculo Esquelético , Ratas , Animales , Músculo Esquelético/metabolismo , Citometría de Flujo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Membrana Celular/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Transporte de Proteínas
2.
Biol Reprod ; 108(2): 229-240, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36308432

RESUMEN

Membrane fusion in sperm cells is crucial for acrosomal exocytosis and must be preserved to ensure fertilizing capacity. Evolutionarily conserved protein machinery regulates acrosomal exocytosis. Molecular chaperones play a vital role in spermatogenesis and post-testicular maturation. Cysteine string protein (CSP) is a member of the Hsp40 co-chaperones, and the participation of molecular chaperones in acrosomal exocytosis is poorly understood. In particular, the role of CSP in acrosomal exocytosis has not been reported so far. Using western blot and indirect immunofluorescence, we show that CSP is present in human sperm, is palmitoylated, and predominantly bound to membranes. Moreover, using functional assays and transmission electron microscopy, we report that blocking the function of CSP avoided the assembly of trans-complexes and inhibited exocytosis. In summary, here, we describe the presence of CSP in human sperm and show that this protein has an essential role in membrane fusion during acrosomal exocytosis mediating the trans-SNARE complex assembly between the outer acrosomal and plasma membranes. In general, understanding CSP's role is critical in identifying new biomarkers and generating new rational-based approaches to treat male infertility.


Asunto(s)
Acrosoma , Proteínas SNARE , Humanos , Masculino , Acrosoma/metabolismo , Exocitosis/fisiología , Semen/metabolismo , Proteínas SNARE/metabolismo , Espermatozoides/metabolismo
3.
Biochem J ; 478(2): 407-422, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33393983

RESUMEN

Insulin stimulates glucose uptake in muscle cells by rapidly redistributing vesicles containing GLUT4 glucose transporters from intracellular compartments to the plasma membrane (PM). GLUT4 vesicle fusion requires the formation of SNARE complexes between vesicular VAMP and PM syntaxin4 and SNAP23. SNARE accessory proteins usually regulate vesicle fusion processes. Complexins aide in neuro-secretory vesicle-membrane fusion by stabilizing trans-SNARE complexes but their participation in GLUT4 vesicle fusion is unknown. We report that complexin-2 is expressed and homogeneously distributed in L6 rat skeletal muscle cells. Upon insulin stimulation, a cohort of complexin-2 redistributes to the PM. Complexin-2 knockdown markedly inhibited GLUT4 translocation without affecting proximal insulin signalling of Akt/PKB phosphorylation and actin fiber remodelling. Similarly, complexin-2 overexpression decreased maximal GLUT4 translocation suggesting that the concentration of complexin-2 is finely tuned to vesicle fusion. These findings reveal an insulin-dependent regulation of GLUT4 insertion into the PM involving complexin-2.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Mioblastos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Transportador de Glucosa de Tipo 4/genética , Insulina/genética , Insulina/metabolismo , Músculo Esquelético/citología , Mioblastos/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...