Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475349

RESUMEN

Macromolecules and their complexes remain interesting topics in various fields, such as targeted drug delivery and tissue regeneration. The complex chemical structure of such substances can be studied with a combination of Raman spectroscopy and machine learning. The complex of whey protein isolate (WPI) and hyaluronic acid (HA) is beneficial in terms of drug delivery. It provides HA properties with the stability obtained from WPI. However, differences between WPI-HA and WPI solutions can be difficult to detect by Raman spectroscopy. Especially when the low HA (0.1, 0.25, 0.5% w/v) and the constant WPI (5% w/v) concentrations are used. Before applying the machine learning techniques, all the collected data were divided into training and test sets in a ratio of 3:1. The performances of two ensemble methods, random forest (RF) and gradient boosting (GB), were evaluated on the Raman data, depending on the type of problem (regression or classification). The impact of noise reduction using principal component analysis (PCA) on the performance of the two machine learning methods was assessed. This procedure allowed us to reduce the number of features while retaining 95% of the explained variance in the data. Another application of these machine learning methods was to identify the WPI Raman bands that changed the most with the addition of HA. Both the RF and GB could provide feature importance data that could be plotted in conjunction with the actual Raman spectra of the samples. The results show that the addition of HA to WPI led to changes mainly around 1003 cm-1 (correspond to ring breath of phenylalanine) and 1400 cm-1, as demonstrated by the regression and classification models. For selected Raman bands, where the feature importance was greater than 1%, a direct evaluation of the effect of the amount of HA on the Raman intensities was performed but was found not to be informative. Thus, applying the RF or GB estimators to the Raman data with feature importance evaluation could detect and highlight small differences in the spectra of substances that arose from changes in the chemical structure; using PCA to filter out noise in the Raman data could improve the performance of both the RF and GB. The demonstrated results will make it possible to analyze changes in chemical bonds during various processes, for example, conjugation, to study complex mixtures of substances, even with small additions of the components of interest.

2.
ACS Appl Mater Interfaces ; 15(21): 25354-25368, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204221

RESUMEN

The intravesical instillation procedure is a proven method in modern urology for the treatment of bladder diseases. However, the low therapeutic efficiency and painfulness of the instillation procedure are significant limitations of this method. In the present study, we propose an approach to solving this problem by using microsized mucoadhesive macromolecular carriers based on whey protein isolate with the possibility of prolonged release of drugs as a drug delivery system. The optimal water-to-oil ratio (1:3) and whey protein isolate concentration (5%) were determined to obtain emulsion microgels with sufficient loading efficiency and mucoadhesive properties. The droplet diameter of emulsion microgels varies from 2.2 to 3.8 µm. The drug release kinetics from the emulsion microgels was evaluated. The release of the model dye in saline and artificial urine in vitro was observed for 96 h and reached up to 70% of loaded cargo for samples. The effect of emulsion microgels on the morphology and viability of two cell lines was observed: L929 mouse fibroblasts (normal adherent cells) and THP-1 human monocytes (cancer suspension cells). Developed emulsion microgels (5%, 1:3 and 1:5) showed sufficient mucoadhesion to a porcine bladder urothelium ex vivo. The biodistribution of emulsion microgels (5%, 1:3 and 1:5) in mice (n = 3) after intravesical (instillation) and systemic (intravenous) administration was assessed in vivo and ex vivo using near-infrared fluorescence live imaging for real time. It was demonstrated that intravesical instillation allows approximately 10 times more efficient accumulation of emulsion microgels in the mice urinary bladder in vivo 1 h after injection compared to systemic injection. The retention of the emulsion of mucoadhesive microgels in bladders after the intravesical instillation was observed for 24 h.


Asunto(s)
Microgeles , Neoplasias de la Vejiga Urinaria , Ratones , Humanos , Animales , Porcinos , Distribución Tisular , Urotelio/metabolismo , Emulsiones/farmacología , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/uso terapéutico , Sistemas de Liberación de Medicamentos
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769101

RESUMEN

Complex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.8 ± 0.4 µm) containing labeled etanercept (100 µg per dose) in the kidneys of mice. The comparison of injection into the renal artery and tail vein shows the significant superiority of the intra-arterial administration strategy. The etanercept retention rate of 18% and 8% ID in kidneys was found 1 min and 1 h after injection, respectively. The capsules were predominantly localized in the glomeruli after injection in mice using a model of acute glomerulonephritis. Histological analysis confirmed a significant therapeutic effect only in animals with intra-arterial administration of microcapsules with etanercept. The proposed strategy combines endovascular surgery and the use of polymer microcapsules containing a high molecular weight drug that can be successfully applied to treat a wide range of kidney diseases associated with glomerular pathology.


Asunto(s)
Glomerulonefritis , Ratones , Animales , Etanercept/uso terapéutico , Cápsulas , Glomerulonefritis/patología , Riñón/patología , Glomérulos Renales/patología
4.
Pharmaceutics ; 15(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36678843

RESUMEN

The possibility of using magnetically labeled blood cells as carriers is a novel approach in targeted drug-delivery systems, potentially allowing for improved bloodstream delivery strategies. Blood cells already meet the requirements of biocompatibility, safety from clotting and blockage of small vessels. It would solve the important problem of the patient's immune response to embedded foreign carriers. The high efficiency of platelet loading makes them promising research objects for the development of personalized drug-delivery systems. We are developing a new approach to use platelets decorated with magnetic nanoparticles as a targeted drug-delivery system, with a focus on bloodstream delivery. Platelets are non-nuclear blood cells and are of great importance in the pathogenesis of blood-clotting disorders. In addition, platelets are able to attach to circulating tumor cells. In this article, we studied the effect of platelets labeled with BSA-modified magnetic nanoparticles on healthy and cancer cells. This opens up broad prospects for future research based on the delivery of specific active substances by this method.

5.
ACS Appl Mater Interfaces ; 14(46): 51579-51592, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36367877

RESUMEN

A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism. While labeled containers can serve as anchored tags for imaging macrophages in vivo, they can affect the properties and functions of macrophages. This work demonstrates that 3 µm sized capsules based on biocompatible polyelectrolytes and fluorescently labeled with both Cy7 and RITC dyes do not affect cell functionalization in vitro, such as viability, proliferation, and movement of transformed monocyte/macrophage-like cells (RAW 264.7) and primary bone marrow derived macrophages (BMDM) at maximal loading of five capsules per cell. In addition, capsules allowed fluorescent detection of ex vivo loaded cells 24 h after the tail vein injection in vivo and visualization of microcapsule-laden macrophages ex vivo using confocal microscopy. We have delivered about 62.5% of injected BMDM containing 12.5 million capsules with 3.75 µg of high-molecular-weight cargo (0.3 pg/capsule) to the liver. Our results demonstrate that 3 µm polyelectrolyte fluorescently labeled microcapsules can be used for safe macrophage loading, allowing cell tracking and drug delivery, which will facilitate development of macrophage-based cell therapy protocols.


Asunto(s)
Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Cápsulas , Macrófagos , Rastreo Celular
6.
Pharmaceutics ; 14(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35745772

RESUMEN

Infectious sequelae caused by surgery are a significant problem in modern medicine due to their reduction of therapeutic effectiveness and the patients' quality of life.Recently, new methods of local antimicrobial prophylaxis of postoperative sequelae have been actively developed. They allow high local concentrations of drugs to be achieved, increasing the antibiotic therapy's effectiveness while reducing its side effects. We have developed and characterized antimicrobial hydrogels based on an inexpensive and biocompatible natural substance from the dairy industry-whey protein isolate-as matrices for drug delivery. The release of cefazolin from the pores of hydrogel structures directly depends on the amount of the loaded drug and occurs in a prolonged manner for three days. Simultaneously with the antibiotic release, hydrogel swelling and partial degradation occurs. The WPI hydrogels absorb solvent, doubling in size in three days and retaining cefazolin throughout the duration of the experiment. The antimicrobial activity of cefazolin-loaded WPI hydrogels against Staphylococcus aureus growth is prolonged in comparison to that of the free cefazolin. The overall cytotoxic effect of cefazolin-containing WPI hydrogels is lower than that of free antibiotics. Thus, our work shows that antimicrobial WPI hydrogels are suitable candidates for local antibiotic therapy of infectious surgical sequelae.

7.
Pharmaceutics ; 14(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35631642

RESUMEN

The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 µm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.

8.
Biomed Opt Express ; 12(7): 4467-4477, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34457426

RESUMEN

Optical coherence tomography (OCT) has become widespread in clinical applications in which precise three-dimensional functional imaging of living organs is required. Nevertheless, the kidney is inaccessible for the high resolution OCT imaging due to a high light attenuation coefficient of skin and soft tissues that significantly limits the penetration depth of the probing laser beam. Here, we introduce a surgical protocol and fixation scheme that enables functional visualization of kidney's peritubular capillaries via OCT microangiography. The model of reversible/irreversible glomerulus embolization using drug microcarriers confirms the ability of OCT to detect circulatory disorders. This approach can be used for choosing optimal carriers, their dosages and diagnosis of other blood flow pathologies.

9.
Molecules ; 26(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917731

RESUMEN

3-(2-Chlorobenzylidene)-5-(p-tolyl)furan-2(3H)-one (1), C18H13ClO2, crystallizes with Z = 8 and Z' = 2, and the structure at 100 K has orthorhombic (Pna21) symmetry. Each kind of molecule takes part in π-π stacking interactions to form infinite chains parallel to the c axis. We believe that the existence of two forms can be explained by the probable rotation around a single C-C bond. The quantum chemical modeling reveals that these molecules are almost equivalent energetically, and they can be described as the two most stable conformers (rotamers) with a minor rotational barrier of about 0.67 kcal/mol.

10.
Biomed Opt Express ; 12(1): 380-394, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33659080

RESUMEN

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.

11.
Materials (Basel) ; 14(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562870

RESUMEN

A novel versatile biocompatible hydrogel of whey protein isolate (WPI) and two types of tannic acid (TAs) was prepared by crosslinking of WPI with TAs in a one-step method at high temperature for 30 min. WPI is one common protein-based preparation which is used for hydrogel formation. The obtained WPI-TA hydrogels were in disc form and retained their integrity after sterilization by autoclaving. Two TA preparations of differing molecular weight and chemical structure were compared, namely a polygalloyl glucose-rich extract-ALSOK 02-and a polygalloyl quinic acid-rich extract-ALSOK 04. Hydrogel formation was observed for WPI solutions containing both preparations. The swelling characteristics of hydrogels were investigated at room temperature at different pH values, namely 5, 7, and 9. The swelling ability of hydrogels was independent of the chemical structure of the added TAs. A trend of decrease of mass increase (MI) in hydrogels was observed with an increase in the TA/WPI ratio compared to the control WPI hydrogel without TA. This dependence (a MI decrease-TA/WPI ratio) was observed for hydrogels with different types of TA both in neutral and acidic conditions (pH 5.7). Under alkaline conditions (pH 9), negative values of swelling were observed for all hydrogels with a high content of TAs and were accompanied by a significant release of TAs from the hydrogel network. Our studies have shown that the release of TA from hydrogels containing ALSOK04 is higher than from hydrogels containing ALSOK 02. Moreover, the addition of TAs, which display a strong anti-cancer effect, increases the cytotoxicity of WPI-TAs hydrogels against the Hep-2 human laryngeal squamous carcinoma (Hep-2 cells) cell line. Thus, WPI-TA hydrogels with prolonged drug release properties and cytotoxicity effect can be used as anti-cancer scaffolds.

12.
J Control Release ; 329: 175-190, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33276016

RESUMEN

Targeting drug delivery systems is crucial to reducing the side effects of therapy. However, many of them are lacking effectiveness for kidney targeting, due to systemic dispersion and accumulation in the lungs and liver after intravenous administration. Renal artery administration of carriers provides their effective local accumulation but may cause irreversible vessel blockage. Therefore, the combination of the correct administration procedure, suitable drug delivery system, selection of effective and safe dosage is the key to sparing local therapy. Here, we propose the 3-µm sized fluorescent capsules based on poly-L-arginine and dextran sulfate for targeting the kidney via a mice renal artery. Hemodynamic study of the target kidney in combination with the histological analysis reveals a safe dose of microcapsules (20 × 106), which has not lead to irreversible pathological changes in blood flow and kidney tissue, and provides retention of 20.5 ± 3% of the introduced capsules in the renal cortex glomeruli. Efficacy of fluorescent dye localization in the target kidney after intra-arterial administration is 9 times higher than in the opposite kidney and after intravenous injection. After 24 h microcapsules are not observed in the target kidney when the safe dose of carriers is being used but a high level of fluorescent signal persists for 48 h indicating that fluorescent cargo accumulation in tissues. Injection of non-safe microcapsule dose leads to carriers staying in glomeruli for at least 48 h which has consequences of blood flow not being restored and tissue damage being observed in histology.


Asunto(s)
Portadores de Fármacos , Arteria Renal , Animales , Cápsulas , Sistemas de Liberación de Medicamentos , Riñón , Ratones
13.
Nanomedicine ; 28: 102184, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32222475

RESUMEN

Many nanomedicine approaches are struggling to reach high enough effectiveness in delivery if applied systemically. The perspective is sought to explore the clinical practices currently used for localized treatment. In this study, we combine in vivo targeting of carriers sensitive to the external magnetic field with clinically used endovascular delivery to specific site. Fluorescent micron-size capsules made of biodegradable polymers and containing magnetite nanoparticles incorporated in the capsule wall were explored in vivo using Near-Infrared Fluorescence Live Imaging for Real-Time. Comparison of systemic (intravenous) and directed (intra-arterial) administration of the magnetic microcapsule targeting in the hindpaw vessels demonstrated that using femoral artery injection in combination with magnetic field exposure is 4 times more efficient than tail vein injection. Thus, endovascular targeting significantly improves the capabilities of nanoengineered drug delivery systems reducing the systemic side effects of therapy.


Asunto(s)
Nanopartículas de Magnetita/química , Nanomedicina/métodos , Animales , Cápsulas/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Polímeros/química
14.
IUCrdata ; 5(Pt 7): x200919, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36339787

RESUMEN

In the title compound, C12H13NO2, the pyrrolidinone moiety is almost flat while the oxazole ring adopts an envelope conformation with the carbon atom bearing the phenyl substituent as the flap: the angle between the mean planes of the fused heterocyclic rings is 45.47 (19)°. In the crystal, C-H⋯O and C-H⋯π contacts link the mol-ecules into infinite [010] chains.

15.
IUCrdata ; 5(Pt 7): x200937, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36339791

RESUMEN

The title compound, C17H10BrCl2NO2, crystallizes in the monoclinic space group C2/c with a large cell volume of 6207 (3) Å3. The asymmetric unit of the title compound investigated at 120 K contains two crystallographically independent mol-ecules (Z' = 2). Each mol-ecule demonstrates slight non-planarity in the solid state and a Z-configuration for the exocyclic C=C bond. The crystal packing reveals the presence of π-π stacking inter-actions between the substituted benzene rings [centroid-centroid distances of 3.836 (5) Å, shift distances in the range 1.272-1.843 Å].

16.
ACS Biomater Sci Eng ; 6(1): 389-397, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463221

RESUMEN

Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 µm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules.


Asunto(s)
Portadores de Fármacos , Administración Cutánea , Cápsulas , Polielectrolitos , Flujo Sanguíneo Regional
17.
Biomater Sci ; 6(8): 2219-2229, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-29985495

RESUMEN

Targeted cell delivery via magnetically sensitive microcapsules of an applied magnetic field would advance localized cell transplantation therapy, by which healthy cells can be introduced into tissues to repair damaged or diseased organs. In the present research, we implement magnetically sensitive cells via an uptake of microcapsules containing magnetic nanoparticles in their walls. As is shown in an example of the MA-104 cell line, the magnetic polyelectrolyte multilayer capsules have no toxicity effect on the cells after internalization. Microscopy methods have been used to evaluate the uptake of capsules by the cells. Magnetically sensitive cells are retained in the capillary flow when the magnetic gradient field is applied (<200 T m-1), but they proliferate at the site of retention for several days after the magnet is removed. As an example of cell manipulation, we have demonstrated a novel methodology for cell sheet isolation and transfer using cells impregnated with magnetic microcapsules. A weak enzyme treatment is used to facilitate tissue engineering assemblies by cell monolayer deposition. This type of cell monolayer assembly has provided a 3D tissue engineering construction using an externally applied magnetic field, which is modelled in this study. The approach presented in this work opens perspectives for preclinical studies of tissue and organ repair.


Asunto(s)
Nanopartículas de Magnetita/química , Nanocompuestos/química , Animales , Cápsulas/química , Adhesión Celular , Línea Celular , Proliferación Celular , Chlorocebus aethiops , Fenómenos Electromagnéticos
18.
Sci Rep ; 8(1): 9394, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925932

RESUMEN

Synthesis of carbon nanodots (CNDs) in confined geometry via incorporation of dextran sulphate into pores of CaCO3 microparticles is demonstrated. The preparation process included three steps: co-precipitation of solutions of inorganic salts and carbon source, thermal treatment and CaCO3 matrix removal. We show that geometric constraints can be used to precisely control the amount of source material and to avoid formation of large carbon particles. Analysis of TEM data shows particle size of ~3.7 nm with narrow size distribution. Furthermore, we found that variation in pore morphology has a clear effect on CNDs structure and optical properties. CNDs with graphene oxide like structure were obtained in the nanoporous outer shell layer of CaCO3 microparticles, while less ordered CNDs with the evidence of complex disordered carbons were extracted from the inner microcavity. These results suggest that confined volume synthesis route in CaCO3 nanopores can be used to precisely control the structure and optical properties of CNDs.

19.
Sci Rep ; 7: 44159, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28281573

RESUMEN

Lactoferrin (Lf) has considerable potential as a functional ingredient in food, cosmetic and pharmaceutical applications. However, the bioavailability of Lf is limited as it is susceptible to digestive enzymes in gastrointestinal tract. The shells comprising alternate layers of bovine serum albumin (BSA) and tannic acid (TA) were tested as Lf encapsulation system for oral administration. Lf absorption by freshly prepared porous 3 µm CaCO3 particles followed by Layer-by-Layer assembly of the BSA-TA shells and dissolution of the CaCO3 cores was suggested as the most efficient and harmless Lf loading method. The microcapsules showed high stability in gastric conditions and effectively protected encapsulated proteins from digestion. Protective efficiency was found to be 76 ± 6% and 85 ± 2%, for (BSA-TA)4 and (BSA-TA)8 shells, respectively. The transit of Lf along the gastrointestinal tract (GIT) of mice was followed in vivo and ex vivo using NIR luminescence. We have demonstrated that microcapsules released Lf in small intestine allowing 6.5 times higher concentration than in control group dosed with the same amount of free Lf. Significant amounts of Lf released from microcapsules were then absorbed into bloodstream and accumulated in liver. Suggested encapsulation system has a great potential for functional foods providing lactoferrin.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Lactoferrina , Albúmina Sérica Bovina , Taninos , Administración Oral , Animales , Cápsulas , Bovinos , Femenino , Lactoferrina/química , Lactoferrina/farmacocinética , Lactoferrina/farmacología , Ratones , Ratones Endogámicos BALB C , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacocinética , Albúmina Sérica Bovina/farmacología , Taninos/química , Taninos/farmacocinética , Taninos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA