Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pediatr Infect Dis J ; 43(8): 809-812, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717982

RESUMEN

The effect of the Bacille Calmette-Guérin (BCG) vaccine on the immunogenicity of separately administered serogroup C meningococcal vaccine and other vaccinations was examined in 28 infants randomized to receive BCG at age ≤7 days, at 3 months or after study completion. Immunogenicity of the serogroup C meningococcal vaccine and other routine vaccines might be improved when BCG is administered in early infancy.


Asunto(s)
Vacuna BCG , Vacunas Meningococicas , Humanos , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Lactante , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/administración & dosificación , Masculino , Recién Nacido , Femenino , Inmunogenicidad Vacunal , Vacunación , Anticuerpos Antibacterianos/sangre
2.
iScience ; 27(4): 109576, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38638836

RESUMEN

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

3.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37989524

RESUMEN

Tissue-specific gene regulation during development involves the interplay between transcription factors and epigenetic regulators binding to enhancer and promoter elements. The pattern of active enhancers defines the cellular differentiation state. However, developmental gene activation involves a previous step called chromatin priming which is not fully understood. We recently developed a genome-wide functional assay that allowed us to functionally identify enhancer elements integrated in chromatin regulating five stages spanning the in vitro differentiation of embryonic stem cells to blood. We also measured global chromatin accessibility, histone modifications, and transcription factor binding. The integration of these data identified and characterised cis-regulatory elements which become activated before the onset of gene expression, some of which are primed in a signalling-dependent fashion. Deletion of such a priming element leads to a delay in the up-regulation of its associated gene in development. Our work uncovers the details of a complex network of regulatory interactions with the dynamics of early chromatin opening being at the heart of dynamic tissue-specific gene expression control.


Asunto(s)
Cromatina , Secuencias Reguladoras de Ácidos Nucleicos , Cromatina/genética , Diferenciación Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Regiones Promotoras Genéticas/genética
4.
Stem Cell Investig ; 10: 14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404470

RESUMEN

The development of multi-cellular organisms from a single fertilized egg requires to differentially execute the information encoded in our DNA. This complex process is regulated by the interplay of transcription factors with a chromatin environment, both of which provide the epigenetic information maintaining cell-type specific gene expression patterns. Moreover, transcription factors and their target genes form vast interacting gene regulatory networks which can be exquisitely stable. However, all developmental processes originate from pluripotent precursor cell types. The production of terminally differentiated cells from such cells, therefore, requires successive changes of cell fates, meaning that genes relevant for the next stage of differentiation must be switched on and genes not relevant anymore must be switched off. The stimulus for the change of cell fate originates from extrinsic signals which set a cascade of intracellular processes in motion that eventually terminate at the genome leading to changes in gene expression and the development of alternate gene regulatory networks. How developmental trajectories are encoded in the genome and how the interplay between intrinsic and extrinsic processes regulates development is one of the major questions in developmental biology. The development of the hematopoietic system has long served as model to understand how changes in gene regulatory networks drive the differentiation of the various blood cell types. In this review, we highlight the main signals and transcription factors and how they are integrated at the level of chromatin programming and gene expression control. We also highlight recent studies identifying the cis-regulatory elements such as enhancers at the global level and explain how their developmental activity is regulated by the cooperation of cell-type specific and ubiquitous transcription factors with extrinsic signals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...