Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 10: 25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163782

RESUMEN

BACKGROUND: Nitrogen starvation and limitation are known to induce important physiological changes especially in lipid metabolism of microalgae (triglycerides, membrane lipids, beta-carotene, etc.). Although little information is available for Dunaliella salina, it is a promising microalga for biofuel production and biotechnological applications due to its ability to accumulate lipid together with beta-carotene. RESULTS: Batch and chemostat experiments with various degrees of nitrogen limitation, ranging from starvation to nitrogen-replete conditions, were carried out to study carbon storage dynamics (total carbon, lipids, and beta-carotene) in steady state cultures of D. salina. A new protocol was developed in order to manage the very high beta-carotene concentrations and to more accurately separate and quantify beta-carotene and triglycerides by chromatography. Biomass evolution was appropriately described by the Droop model on the basis of the nitrogen quota dynamics. CONCLUSIONS: Triglycerides and beta-carotene were both strongly anti-correlated with nitrogen quota highlighting their carbon sink function in nitrogen depletion conditions. Moreover, these two valuable molecules were correlated each other for nitrogen replete conditions or moderated nitrogen limitations (N:C ratio higher than 0.04). Under nitrogen starvation, i.e., for very low N:C ratio, the dynamic revealed, for the first time, uncoupled part (higher triglyceride accumulation than beta-carotene), possibly because of shortage in key proteins involved in the stabilization of lipid droplets. This study motivates the accurate control of the microalgal nitrogen quota in order to optimize lipid productivity.

2.
Artículo en Inglés | MEDLINE | ID: mdl-26478191

RESUMEN

Cnidarian-dinoflagellate symbiosis mainly relies on nutrient recycling, thus providing both partners with a competitive advantage in nutrient-poor waters. Essential processes related to lipid metabolism can be influenced by various factors, including hyperthermal stress. This can affect the lipid content and distribution in both partners, while contributing to symbiosis disruption and bleaching. In order to gain further insight into the role and distribution of lipids in the cnidarian metabolism, we investigated the lipid composition of the sea anemone Anemonia viridis and its photosynthetic dinoflagellate endosymbionts (Symbiodinium). We compared the lipid content and fatty acid profiles of the host cellular layers, non-symbiotic epidermal and symbiont-containing gastrodermal cells, and those of Symbiodinium, in a mass spectrometry-based assessment. Lipids were more concentrated in Symbiodinium cells, and the lipid class distribution was dominated by polar lipids in all tissues. The fatty acid distribution between host cell layers and Symbiodinium cells suggested potential lipid transfers between the partners. The lipid composition and distribution was modified during short-term hyperthermal stress, mainly in Symbiodinium cells and gastrodermis. Exposure to elevated temperature rapidly caused a decrease in polar lipid C18 unsaturated fatty acids and a strong and rapid decrease in the abundance of polar lipid fatty acids relative to sterols. These lipid indicators could therefore be used as sensitive biomarkers to assess the physiology of symbiotic cnidarians, especially the effect of thermal stress at the onset of cnidarian bleaching. Overall, the findings of this study provide some insight on key lipids that may regulate maintenance of the symbiotic interaction.


Asunto(s)
Dinoflagelados/fisiología , Epidermis/metabolismo , Metabolismo de los Lípidos , Anémonas de Mar/metabolismo , Simbiosis , Animales , Análisis por Conglomerados , Ácidos Grasos/metabolismo , Respuesta al Choque Térmico , Estrés Fisiológico
3.
J Phycol ; 48(4): 966-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27009006

RESUMEN

The goal of this study was to investigate the time response of two major carbon (C) reserves, respectively neutral lipids (NL) and total carbohydrate (TC), in the Haptophyte Isochrysis sp. growing in nitrogen (N)-sufficient or N-starved conditions and under light:dark (L:D) cycles. Experiments were carried out in a cyclostat culture system that allowed the following of the dynamics of the main cell compounds at both hourly and daily time scales. Under N-sufficient conditions, the L:D cycles cause the population to be synchronized, with most of the cells dividing at the beginning of the dark period. The C-specific growth rate was maximal around midday and negative during the dark period due to respiration processes. NL and TC both accumulated during the day and consumed during the night. We showed that NL and TC are highly dynamic compounds, as more than three quarters of NL and TC accumulated during the light period were consumed during the dark period. In contrast to NL, phospholipid and glycolipid to C ratios remained quite stable during the light/dark cycles. The major effect of N starvation on the NL and TC dynamics was to uncouple their diel variations from the L:D cycle, in two different ways depending on their respective role during short-term acclimation. Whereas the TC per cell ratio increased rapidly to reach a stable value in response to N starvation, NL per cell continued to oscillate, but with a pattern out of phase with the L:D cycle.

4.
J Phycol ; 48(3): 647-56, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27011080

RESUMEN

Partitioning of the carbon (C) fixed during photosynthesis between neutral lipids (NL) and carbohydrates was investigated in Isochrysis sp. (Haptophyceae) in relation to its nitrogen (N) status. Using batch and nitrate-limited continuous cultures, we studied the response of these energy reserve pools to both conditions of N starvation and limitation. During N starvation, NL and carbohydrate quotas increased but their specific growth rates (specific rates of variation, µCAR and µNL ) decreased. When cells were successively deprived and then resupplied with NO3 , both carbohydrates and neutral lipids were inversely related to the N quota (N:C). These negative relationships were not identical during N impoverishment and replenishment, indicating a hysteresis phenomenon between N and C reserve mobilizations. Cells acclimated to increasing degrees of N limitation in steady-state chemostat cultures showed decreasing NL quota and increasing carbohydrate quota. N starvation led to a visible but only transient increase of NL productivity. In continuous cultures, the highest NL productivity was obtained for the highest experimented dilution rate (D = 1.0 d(-1) ; i.e., for non N-limited growth conditions), whereas the highest carbohydrate productivity was obtained at D = 0.67 d(-1) . We used these results to discuss the nitrogen conditions that optimize NL productivities in the context of biofuel production.

5.
Mar Biol ; 158(4): 883-892, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-24391262

RESUMEN

Carnivorous zooplankton is a key element to the energy transfer through the arctic food web, linking lipid rich herbivores to the top predators. We investigated the growth and lipid dynamic of the Arctic pelagic amphipod Themisto libellula in Kongsfjorden (Svalbard, 79°N) from May to October 2007. Additional samplings were performed in spring and summer 2006 and further north in Rijpfjorden (80°N), in September 2006 and 2007. In Kongsfjorden, the first free-swimming stages (3 mm) appeared early May and reached their adult length (25 mm), in October. During their first year, they grew according to a Von Bertalanffy model and most probably constituted a single cohort. Juveniles had the highest growth rate (0.19 mm day-1) and revealed relatively low total lipid (TL) content (about 2.5% wet weight (WW)) with phospholipids as the major lipid class. Sub-adults showed a distinct decrease of growth rates which coincided with the increase of neutral lipid storage, reflecting a switch in energy allocation, from somatic growth to lipid storage. Indeed wax esters (WE) increased up to 48.5% TL on average in adults in 2006 while triacylglycerols (TAG) remained almost constant below 25.2% TL. The absence of lipid accumulation (in disproportion of the weight) in 2007 could be explained by a higher metabolism of T. libellula or preys of lower quality. In Rijpfjorden, adults in their second year continued accumulating lipid (up to 10% WW) with high and similar proportions of both lipid classes, WE and TAG. We highlighted that T. libellula exhibited a variable lipid metabolism along its life cycle depending on its physiological needs and environmental conditions.

6.
Lipids ; 42(7): 647-57, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17541797

RESUMEN

Structure and functioning of colonial pyrosomes are largely undescribed and their lipid characteristics have received limited attention. The aim of this paper is to fill this gap on one of the dominant species Pyrosoma atlanticum. Lipid content is tightly coupled to size and weight. Lipid composition shows a large dominance of structural polar lipids. Neutral lipids were dominated by sterols with low levels of acylglycerols and free fatty acids. Phospholipids show a dominance of PC with intermediate percentages of PE and DPG. Other constituents (PS, PI, LPC, sphingolipids) were present at lower levels. Fatty acid composition of DAG and TAG showed a dominance of saturated acids (16:0, 14:0), DHA and intermediate levels of MUFA. Phospholipids were dominated by DHA with values exceeding 30% of total FA in all categories except for PI, where lower percentages occurred. Saturated acids were second in abundance with MUFA showing intermediate concentrations. Sterols were dominated by 24-methylcholesta-5,22E-dien-3beta-ol with more than 22% of the total sterol. Cholesterol (cholest-5-en-3beta-ol) represented only 12 % of the total while 24-methylcholesta-5,24(28)E-dien-3beta-ol accounted for 11% of the total sterols. The low levels of triacylglycerols and free fatty acids, coupled with high concentrations of glycolipids and phytoplankton-derived degraded chloropigments, is evidence of a direct link with the digestive activity and substantiate the idea of a high physiological turnover as an alternative to large lipid accumulation. The fatty acid and sterol profiles are consistent with a diverse phytoplankton diet, and a strong contribution of phospholipid classes to energy needs, including locomotion.


Asunto(s)
Ácidos Grasos Insaturados/análisis , Ácidos Grasos/análisis , Metabolismo de los Lípidos , Urocordados/química , Zooplancton/química , Animales , Cromatografía en Capa Delgada , Ácidos Docosahexaenoicos/análisis , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/análisis , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Océano Índico , Lípidos/química , Fosfolípidos/química , Fosfolípidos/metabolismo , Esteroles/análisis , Esteroles/metabolismo , Urocordados/metabolismo , Zooplancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...