Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol Methods ; 533: 113743, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147231

RESUMEN

Sepsis remains a leading cause of death worldwide with no proven immunomodulatory therapies. Stratifying Patient Immune Endotypes in Sepsis ('SPIES') is a prospective, multicenter observational study testing the utility of ELISpot as a functional bioassay specifically measuring cytokine-producing cells after stimulation to identify the immunosuppressed endotype, predict clinical outcomes in septic patients, and test potential immune stimulants for clinical development. Most ELISpot protocols call for the isolation of PBMC prior to their inclusion in the assay. In contrast, we developed a diluted whole blood (DWB) ELISpot protocol that has been validated across multiple laboratories. Heparinized whole blood was collected from healthy donors and septic patients and tested under different stimulation conditions to evaluate the impact of blood dilution, stimulant concentration, blood storage, and length of stimulation on ex vivo IFNγ and TNFα production as measured by ELISpot. We demonstrate a dynamic range of whole blood dilutions that give a robust ex vivo cytokine response to stimuli. Additionally, a wide range of stimulant concentrations can be utilized to induce cytokine production. Further modifications demonstrate anticoagulated whole blood can be stored up to 24 h at room temperature without losing significant functionality. Finally, we show ex vivo stimulation can be as brief as 4 h allowing for a substantial decrease in processing time. The data demonstrate the feasibility of using ELISpot to measure the functional capacity of cells within DWB under a variety of stimulation conditions to inform clinicians on the extent of immune dysregulation in septic patients.


Asunto(s)
Ensayo de Immunospot Ligado a Enzimas , Interferón gamma , Sepsis , Factor de Necrosis Tumoral alfa , Humanos , Ensayo de Immunospot Ligado a Enzimas/métodos , Interferón gamma/sangre , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología , Sepsis/inmunología , Sepsis/diagnóstico , Sepsis/sangre , Estudios Prospectivos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Femenino , Reproducibilidad de los Resultados
2.
Shock ; 62(2): 255-264, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754032

RESUMEN

ABSTRACT: Background: The inability to evaluate host immunity in a rapid quantitative manner in patients with sepsis has severely hampered development of novel immune therapies. The enzyme-linked immunospot (ELISpot) assay is a functional bioassay that measures the number of cytokine-secreting cells and the relative amount of cytokine produced at the single-cell level. A key advantage of ELISpot is its excellent dynamic range enabling a more precise quantifiable assessment of host immunity. Herein, we tested the hypothesis that the ELISpot assay can detect dynamic changes in both innate and adaptive immunity as they often occur during sepsis. We also tested whether ELISpot could detect the effect of immune drug therapies to modulate innate and adaptive immunity. Methods: Mice were made septic using sublethal cecal ligation and puncture. Blood and spleens were harvested serially, and ex vivo interferon γ and TNF-α production were compared by ELISpot and enzyme-linked immunosorbent assay. The capability of ELISpot to detect changes in innate and adaptive immunity due to in vivo immune therapy with dexamethasone, IL-7, and arginine was also evaluated. Results: ELISpot confirmed a decreased innate and adaptive immunity responsiveness during sepsis progression. More importantly, ELISpot was also able to detect changes in adaptive and innate immunity in response to immune-modulatory reagents, for example, dexamethasone, arginine, and IL-7, in a readily quantifiable manner, as predicted by the reagents known mechanisms of action. ELISpot and enzyme-linked immunosorbent assay results tended to parallel one another although some differences were noted. Conclusion: ELISpot offers a unique capability to assess the functional status of both adaptive and innate immunity over time. The results presented herein demonstrate that ELISpot can also be used to detect and follow the in vivo effects of drugs to ameliorate sepsis-induced immune dysfunction. This capability would be a major advance in guiding new immune therapies in sepsis.


Asunto(s)
Inmunidad Adaptativa , Ensayo de Immunospot Ligado a Enzimas , Inmunidad Innata , Sepsis , Sepsis/inmunología , Animales , Inmunidad Innata/inmunología , Inmunidad Adaptativa/inmunología , Ratones , Masculino , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Femenino , Dexametasona/uso terapéutico , Dexametasona/farmacología
3.
Crit Care Explor ; 6(2): e1052, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352942

RESUMEN

OBJECTIVES: Cell-free hemoglobin (CFH) is a potent mediator of endothelial dysfunction, organ injury, coagulopathy, and immunomodulation in hemolysis. These mechanisms have been demonstrated in patients with sepsis, hemoglobinopathies, and those receiving transfusions. However, less is known about the role of CFH in the pathophysiology of trauma, despite the release of equivalent levels of free hemoglobin. DATA SOURCES: Ovid MEDLINE, Embase, Web of Science Core Collection, and BIOSIS Previews were searched up to January 21, 2023, using key terms related to free hemoglobin and trauma. DATA EXTRACTION: Two independent reviewers selected studies focused on hemolysis in trauma patients, hemoglobin breakdown products, hemoglobin-mediated injury in trauma, transfusion, sepsis, or therapeutics. DATA SYNTHESIS: Data from the selected studies and their references were synthesized into a narrative review. CONCLUSIONS: Free hemoglobin likely plays a role in endothelial dysfunction, organ injury, coagulopathy, and immune dysfunction in polytrauma. This is a compelling area of investigation as multiple existing therapeutics effectively block these pathways.

4.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38100268

RESUMEN

BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.


Asunto(s)
Interferón gamma , Sepsis , Humanos , Interferón gamma/metabolismo , Inmunoadsorbentes/uso terapéutico , Estudios Prospectivos , Biomarcadores
5.
medRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37745385

RESUMEN

BACKGROUND: Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS: An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS: Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS: A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.

6.
Pediatr Res ; 93(2): 405-412, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36376506

RESUMEN

The field of pediatric critical care has been hampered in the era of precision medicine by our inability to accurately define and subclassify disease phenotypes. This has been caused by heterogeneity across age groups that further challenges the ability to perform randomized controlled trials in pediatrics. One approach to overcome these inherent challenges include the use of machine learning algorithms that can assist in generating more meaningful interpretations from clinical data. This review summarizes machine learning and artificial intelligence techniques that are currently in use for clinical data modeling with relevance to pediatric critical care. Focus has been placed on the differences between techniques and the role of each in the clinical arena. The various forms of clinical decision support that utilize machine learning are also described. We review the applications and limitations of machine learning techniques to empower clinicians to make informed decisions at the bedside. IMPACT: Critical care units generate large amounts of under-utilized data that can be processed through artificial intelligence. This review summarizes the machine learning and artificial intelligence techniques currently being used to process clinical data. The review highlights the applications and limitations of these techniques within a clinical context to aid providers in making more informed decisions at the bedside.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Humanos , Niño , Algoritmos , Cuidados Críticos , Medicina de Precisión
7.
Ann Acad Med Singap ; 52(10): 533-541, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920204

RESUMEN

Introduction: Although severe acute respiratory failure is the primary cause of morbidity and mortality in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, this viral infection leads to cardiovascular disease in some individuals. Cardiac effects of the virus include myocarditis, pericarditis, arrhythmias, coronary aneurysms and cardiomyopathy, and can result in cardiogenic shock and multisystem organ failure. Method: This review summarises cardiac manifesta-tions of SARS-CoV-2 in the paediatric population. We performed a scoping review of cardiovascular disease associated with acute coronavirus disease 2019 (COVID-19) infection, multisystem inflammatory syndrome in children (MIS-C), and mRNA COVID-19 vaccines. Also examined are special considerations for paediatric athletes and return to play following COVID-19 infection. Results: Children presenting with acute COVID-19 should be screened for cardiac dysfunction and a thorough history should be obtained. Further cardiovascular evaluation should be considered following any signs/symptoms of arrhythmias, low cardiac output, and/or myopericarditis. Patients admitted with severe acute COVID-19 should be monitored with continuous cardiac monitoring. Laboratory testing, as clinically indicated, includes tests for troponin and B-type natriuretic peptide or N-terminal pro-brain natriuretic peptide. Echocardiography with strain evaluation and/or cardiac magnetic resonance imaging should be considered to evaluate diastolic and systolic dysfunction, coronary anatomy, the pericardium and the myocardium. For patients with MIS-C, combination therapy with intravenous immunoglobulin and glucocorticoid therapy is safe and potentially disease altering. Treatment of MIS-C targets the hyperimmune response. Supportive care, including mechanical support, is needed in some cases. Conclusion: Cardiovascular disease is a striking feature of SARS-CoV-2 infection. Most infants, children and adolescents with COVID-19 cardiac disease fully recover with no lasting cardiac dysfunction. However, long-term studies and further research are needed to assess cardiovascular risk with variants of SARS-CoV-2 and to understand the pathophysiology of cardiac dysfunction with COVID-19.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Síndrome de Respuesta Inflamatoria Sistémica , Humanos , COVID-19/complicaciones , COVID-19/fisiopatología , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/etiología , Vacunas contra la COVID-19 , SARS-CoV-2
8.
Best Pract Res Clin Haematol ; 35(3): 101401, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36494149

RESUMEN

The SARS-CoV-2 virus has complex and divergent immune alterations in differing hosts and over disease evolution. Much of the nuanced COVID-19 disease immune dysregulation was originally dominated by innate cytokine changes, which has since been replaced with a more complex picture of innate and adaptive changes characterized by simultaneous hyperinflammatory and immunosuppressive phenomena in effector cells. These intricacies are summarized in this review as well as potential relevance from acute infection to a multisystem inflammatory syndrome commonly seen in children. Additional consideration is made for the influence of variant to variant host cellular changes and the impact of potential vaccination upon these phenotypes. Finally, therapeutic benefit for immune alterations are discussed.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Inmunidad Innata , Citocinas
9.
Cell Rep Methods ; 2(8): 100267, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046626

RESUMEN

Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.


Asunto(s)
Citocinas , Tuberculosis , Humanos , Citocinas/metabolismo , Tuberculosis/metabolismo , Macrófagos , Linfocitos T/metabolismo
10.
PLoS One ; 17(4): e0264979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35421120

RESUMEN

The global COVID-19 pandemic has claimed the lives of more than 750,000 US citizens. Dysregulation of the immune system underlies the pathogenesis of COVID-19, with inflammation mediated tissue injury to the lung in the setting of suppressed systemic immune function. To define the molecular mechanisms of immune dysfunction in COVID-19 we utilized a systems immunology approach centered on the circulating leukocyte phosphoproteome measured by mass cytometry. We find that although COVID-19 is associated with wholesale activation of a broad set of signaling pathways across myeloid and lymphoid cell populations, STAT3 phosphorylation predominated in both monocytes and T cells. STAT3 phosphorylation was tightly correlated with circulating IL-6 levels and high levels of phospho-STAT3 was associated with decreased markers of myeloid cell maturation/activation and decreased ex-vivo T cell IFN-γ production, demonstrating that during COVID-19 dysregulated cellular activation is associated with suppression of immune effector cell function. Collectively, these data reconcile the systemic inflammatory response and functional immunosuppression induced by COVID-19 and suggest STAT3 signaling may be the central pathophysiologic mechanism driving immune dysfunction in COVID-19.


Asunto(s)
COVID-19 , Humanos , Monocitos/metabolismo , Pandemias , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...