Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Virusdisease ; : 1-14, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37363365

RESUMEN

The third SARS-CoV-2 pandemic wave causing Omicron variant has comparatively higher replication rate and transmissibility than the second wave-causing Delta variant. The exact mechanism behind the differential properties of Delta and Omicron in respect to infectivity and virulence is not properly understood yet. This study reports the analysis of different mutations within the receptor binding domain (RBD) of spike glycoprotein and non-structural protein (nsp) of Delta and Omicron strains. We have used computational studies to evaluate the properties of Delta and Omicron variants in this work. Q498R, Q493R and S375F mutations of RBD showed better docking scores for Omicron compared to Delta variant of SARS-CoV-2, whereas nsp3_L1266I with PARP15 (7OUX), nsp3_L1266I with PARP15 (7OUX), and nsp6_G107 with ISG15 (1Z2M) showed significantly higher docking score. The findings of the present study might be helpful to reveal the probable cause of relatively milder form of COVID-19 disease manifested by Omicron in comparison to Delta variant of SARS-CoV-2 virus. Supplementary Information: The online version contains supplementary material available at 10.1007/s13337-023-00823-0.

2.
J Med Virol ; 95(1): e28413, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36541745

RESUMEN

Accumulation of diverse mutations across the structural and nonstructural genes is leading to rapid evolution of SARS-CoV-2, altering its pathogenicity. We performed whole genome sequencing of 239 SARS-CoV-2 RNA samples collected from both adult and pediatric patients across eastern India (West Bengal), during the second pandemic wave in India (April-May 2021). In addition to several common spike mutations within the Delta variant, a unique constellation of eight co-appearing non-Spike mutations was identified, which revealed a high degree of positive mutual correlation. Our results also demonstrated the dynamics of SARS-CoV-2 variants among unvaccinated pediatric patients. 41.4% of our studied Delta strains harbored this signature set of eight co-appearing non-Spike mutations and phylogenetically out-clustered other Delta sub-lineages like 21J, 21A, or 21I. This is the first report from eastern India that portrayed a landscape of co-appearing mutations in the non-Spike proteins, which might have led to the evolution of a distinct Delta subcluster. Accumulation of such mutations in SARS-CoV-2 may lead to the emergence of "vaccine-evading variants." Hence, monitoring of such non-Spike mutations will be significant in the formulation of any future vaccines against those SARS-CoV-2 variants that might evade the current vaccine-induced immunity, among both the pediatric and adult populations.


Asunto(s)
COVID-19 , Adulto , Humanos , Niño , ARN Viral/genética , SARS-CoV-2/genética , Mutación , Glicoproteína de la Espiga del Coronavirus/genética
3.
Microbiol Spectr ; 10(4): e0091422, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35852336

RESUMEN

The evolution of viral variants and their impact on viral transmission have been an area of considerable importance in this pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed the viral variants in different phases of the pandemic in West Bengal, a state in India that is important geographically, and compared the variants with other states like Delhi, Maharashtra, and Karnataka, located in other regions of the country. We have identified 57 pango-lineages in 3,198 SARS-CoV-2 genomes, alteration in their distribution, as well as contrasting profiles of amino acid mutational dynamics across different waves in different states. The evolving characteristics of Delta (B.1.617.2) sublineages and alterations in hydrophobicity profiles of the viral proteins caused by these mutations were also studied. Additionally, implications of predictive host miRNA binding/unbinding to emerging spike or nucleocapsid mutations were highlighted. Our results throw considerable light on interesting aspects of the viral genomic variation and provide valuable information for improved understanding of wave-defining mutations in unfolding the pandemic. IMPORTANCE Multiple waves of infection were observed in many states in India during the coronavirus disease 2019 (COVID19) pandemic. Fine-scale evolution of major SARS-CoV-2 lineages and sublineages during four wave-window categories: Pre-Wave 1, Wave 1, Pre-Wave 2, and Wave 2 in four major states of India: Delhi (North), Maharashtra (West), Karnataka (South), and West Bengal (East) was studied using large-scale virus genome sequencing data. Our comprehensive analysis reveals contrasting molecular profiles of the wave-defining mutations and their implications in host miRNA binding/unbinding of the lineages in the major states of India.


Asunto(s)
COVID-19 , MicroARNs , COVID-19/epidemiología , Genoma Viral , Humanos , India/epidemiología , Mutación , Pandemias , Filogenia , SARS-CoV-2/genética
4.
PLoS Comput Biol ; 17(6): e1009095, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34166361

RESUMEN

The effectiveness of immune responses depends on the precision of stimulus-responsive gene expression programs. Cells specify which genes to express by activating stimulus-specific combinations of stimulus-induced transcription factors (TFs). Their activities are decoded by a gene regulatory strategy (GRS) associated with each response gene. Here, we examined whether the GRSs of target genes may be inferred from stimulus-response (input-output) datasets, which remains an unresolved model-identifiability challenge. We developed a mechanistic modeling framework and computational workflow to determine the identifiability of all possible combinations of synergistic (AND) or non-synergistic (OR) GRSs involving three transcription factors. Considering different sets of perturbations for stimulus-response studies, we found that two thirds of GRSs are easily distinguishable but that substantially more quantitative data is required to distinguish the remaining third. To enhance the accuracy of the inference with timecourse experimental data, we developed an advanced error model that avoids error overestimates by distinguishing between value and temporal error. Incorporating this error model into a Bayesian framework, we show that GRS models can be identified for individual genes by considering multiple datasets. Our analysis rationalizes the allocation of experimental resources by identifying most informative TF stimulation conditions. Applying this computational workflow to experimental data of immune response genes in macrophages, we found that a much greater fraction of genes are combinatorially controlled than previously reported by considering compensation among transcription factors. Specifically, we revealed that a group of known NFκB target genes may also be regulated by IRF3, which is supported by chromatin immuno-precipitation analysis. Our study provides a computational workflow for designing and interpreting stimulus-response gene expression studies to identify underlying gene regulatory strategies and further a mechanistic understanding.


Asunto(s)
Redes Reguladoras de Genes , Modelos Biológicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Teorema de Bayes , Células Cultivadas , Secuenciación de Inmunoprecipitación de Cromatina , Biología Computacional , Simulación por Computador , Perfilación de la Expresión Génica , Inmunidad/genética , Funciones de Verosimilitud , Macrófagos/metabolismo , Ratones , Modelos Genéticos , RNA-Seq
5.
EMBO Mol Med ; 12(3): e11011, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32031337

RESUMEN

HuR is a miRNA derepressor protein that can act as miRNA sponge for specific miRNAs to negate their action on target mRNAs. Here we have identified how HuR, by inducing extracellular vesicles-mediated export of miRNAs, ensures robust derepression of miRNA-repressed cytokines essential for strong pro-inflammatory response in activated mammalian macrophages. Leishmania donovani, the causative agent of visceral leishmaniasis, on the contrary alters immune response of the host macrophage by a variety of complex mechanisms to promote anti-inflammatory response essential for the survival of the parasite. We have found that during Leishmania infection, the pathogen targets HuR to promote onset of anti-inflammatory response in mammalian macrophages. In infected macrophages, Leishmania also upregulate protein phosphatase 2A that acts on Ago2 protein to keep it in dephosphorylated and miRNA-associated form. This causes robust repression of the miRNA-targeted pro-inflammatory cytokines to establish an anti-inflammatory response in infected macrophages. HuR has an inhibitory effect on protein phosphatase 2A expression, and mathematical modelling of macrophage activation process supports antagonistic miRNA-modulatory roles of HuR and protein phosphatase 2A which mutually balances immune response in macrophage by targeting miRNA function. Supporting this model, ectopic expression of the protein HuR and simultaneous inhibition of protein phosphatase 2A induce strong pro-inflammatory response in the host macrophage to prevent the virulent antimonial drug-sensitive or drug-resistant form of L. donovani infection. Thus, HuR can act as a balancing factor of immune responses to curtail the macrophage infection process by the protozoan parasite.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Leishmania donovani , Activación de Macrófagos , Macrófagos/parasitología , MicroARNs , Animales , Leishmaniasis Visceral
6.
Cell Rep ; 17(8): 1907-1914, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851956

RESUMEN

Distinct signaling pathways activate the NF-κB family of transcription factors. The canonical NF-κB-signaling pathway is mediated by IκB kinase 2/ß (IKK2/ß), while the non-canonical pathway depends on IKK1/α. The structural and biochemical bases for distinct signaling by these otherwise highly similar IKKs are unclear. We report single-particle cryoelectron microscopy (cryo-EM) and X-ray crystal structures of human IKK1 in dimeric (∼150 kDa) and hexameric (∼450 kDa) forms. The hexamer, which is the representative form in the crystal but comprises only ∼2% of the particles in solution by cryo-EM, is a trimer of IKK1 dimers. While IKK1 hexamers are not detectable in cells, the surface that supports hexamer formation is critical for IKK1-dependent cellular processing of p100 to p52, the hallmark of non-canonical NF-κB signaling. Comparison of this surface to that in IKK2 indicates significant divergence, and it suggests a fundamental role for this surface in signaling by these kinases through distinct pathways.


Asunto(s)
Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Activación Enzimática , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , FN-kappa B/metabolismo , Multimerización de Proteína , Relación Estructura-Actividad
7.
Sci Signal ; 9(447): ra96, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27678221

RESUMEN

The heterodimer formed by the nuclear factor κB (NF-κB) subunits p52 and RelB is the product of noncanonical signaling in which the key event is the proteolytic processing of p100 to generate p52. The kinases NF-κB-inducing kinase (NIK) and inhibitor of κB kinase 1 (IKK1; also known as IKKα) are activated during noncanonical signaling and play essential roles in p100 processing. In resting cells, RelB remains associated with unprocessed p100 as a transcriptionally inert p100:RelB complex, which is part of a larger assembly with other NF-κB factors known as the "kappaBsome." We investigated how these two different RelB-containing complexes with opposing effects on target gene transcription are formed. We found that RelB controls the extent of both p100 processing and kappaBsome formation during noncanonical signaling. Within an apparently "transitional" complex that contains RelB, NIK, IKK1, and p100, RelB and the NIK:IKK1 complex competed with each other for binding to a region of p100. A fraction of p100 in the transitional complex was refractory to processing, which resulted in the formation of the kappaBsome. However, another fraction of p100 protein underwent NIK:IKK1-mediated phosphorylation and processing while remaining bound to RelB, thus forming the p52:RelB heterodimer. Our results suggest that changes in the relative concentrations of RelB, NIK:IKK1, and p100 during noncanonical signaling modulate this transitional complex and are critical for maintaining the fine balance between the processing and protection of p100.


Asunto(s)
Quinasa I-kappa B/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Transducción de Señal/fisiología , Factor de Transcripción ReIB/metabolismo , Animales , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Ratones , Ratones Noqueados , Subunidad p52 de NF-kappa B/genética , Unión Proteica , Multimerización de Proteína/fisiología , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción ReIB/genética , Quinasa de Factor Nuclear kappa B
8.
EMBO Rep ; 14(11): 1008-16, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24030283

RESUMEN

In mammalian macrophages, the expression of a number of cytokines is regulated by miRNAs. Upon macrophage activation, proinflammatory cytokine mRNAs are translated, although the expression of miRNAs targeting these mRNAs remains largely unaltered. We show that there is a transient reversal of miRNA-mediated repression during the early phase of the inflammatory response in macrophages, which leads to the protection of cytokine mRNAs from miRNA-mediated repression. This derepression occurs through Ago2 phosphorylation, which results in its impaired binding to miRNAs and to the corresponding target mRNAs. Macrophages expressing a mutant, non-phosphorylatable AGO2--which remains bound to miRNAs during macrophage activation--have a weakened inflammatory response and fail to prevent parasite invasion. These findings highlight the relevance of the transient relief of miRNA repression for macrophage function.


Asunto(s)
Activación de Macrófagos/genética , Macrófagos/metabolismo , MicroARNs/metabolismo , Animales , Proteínas Argonautas/metabolismo , Citocinas/farmacología , Humanos , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , MicroARNs/genética , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Unión Proteica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA