Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255937

RESUMEN

Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.


Asunto(s)
Miedo , Receptores de Glucocorticoides , Humanos , Extinción Psicológica , Aprendizaje , Emociones , Hidrolasas
2.
ACS Appl Mater Interfaces ; 14(16): 18453-18463, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35436405

RESUMEN

Broadband absorption of solar light is a key aspect in many applications that involve an efficient conversion of solar energy to heat. Titanium nitride (TiN)-based materials, in the form of periodic arrays of nanostructures or multilayers, can promote significant heat generation upon illumination thanks to their efficient light absorption and refractory character. In this work, pulsed laser deposition was chosen as a synthesis technique to shift metallic bulk-like TiN to nanoparticle-assembled hierarchical oxynitride (TiOxNy) films by increasing the background gas deposition pressure. The nanoporous hierarchical films exhibit a tree-like morphology, a strong broadband solar absorption (∼90% from the UV to the near-infrared range), and could generate temperatures of ∼475 °C under moderate light concentration (17 Suns). The high heat generation achieved by treelike films is ascribed to their porous morphology, nanocrystalline structure, and oxynitride composition, which overall contribute to a superior light trapping and dissipation to heat. These properties pave the way for the implementation of such films as solar absorber structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...