Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338656

RESUMEN

Amyloid beta 1-42 (Aß42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17ß-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17ß-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aß42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aß42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aß42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aß42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aß42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.


Asunto(s)
Estradiol , Potenciación a Largo Plazo , Ratas , Animales , Estradiol/farmacología , Estradiol/metabolismo , Péptidos beta-Amiloides/metabolismo , Memantina/farmacología , Hipocampo/metabolismo , Glutamatos/metabolismo
2.
Cell Rep ; 37(10): 110094, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879272

RESUMEN

Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.


Asunto(s)
Conducta Animal , Región CA1 Hipocampal/metabolismo , Cognición , Encefalomielitis Autoinmune Experimental/metabolismo , Interleucina-17/metabolismo , Plasticidad Neuronal , Receptores de Interleucina-17/metabolismo , Sinapsis/metabolismo , Animales , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/psicología , Interleucina-17/genética , Potenciación a Largo Plazo , Masculino , Ratones Biozzi , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-17/genética , Transducción de Señal , Aprendizaje Espacial , Sinapsis/patología , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Front Cell Neurosci ; 14: 158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848606

RESUMEN

The pathogenesis of Parkinson's disease (PD) is thought to rely on a complex interaction between the patient's genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.

4.
Neuropharmacology ; 170: 108024, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32142791

RESUMEN

OBJECTIVE: The aim of the study was to evaluate electrophysiological effects of safinamide on the intrinsic and synaptic properties of striatal spiny projection neurons (SPNs) and to characterize the possible therapeutic antiparkinsonian effect of this drug in dopamine (DA) denervated rats before and during levodopa (l-DOPA) treatment. BACKGROUND: Current therapeutic options in Parkinson's disease (PD) are primarily DA replacement strategies that usually cause progressive motor fluctuations and l-DOPA-induced dyskinesia (LIDs) as a consequence of SPNs glutamate-induced hyperactivity. As a reversible and use-dependent inhibitor of voltage-gated sodium channels, safinamide reduces the release of glutamate and possibly optimize the effect of l-DOPA therapy in PD. METHODS: Electrophysiological effects of safinamide (1-100 µM) were investigated by patch-clamp recordings in striatal slices of naïve, 6-hydroxydopamine (6-OHDA)-lesioned DA-denervated rats and DA-denervated animals chronically treated with l-DOPA. LIDs were assessed in vivo with and without chronic safinamide treatment and measured by scoring the l-DOPA-induced abnormal involuntary movements (AIMs). Motor deficit was evaluated with the stepping test. RESULTS: Safinamide reduced the SPNs firing rate and glutamatergic synaptic transmission in all groups, showing a dose-dependent effect with half maximal inhibitory concentration (IC50) values in the therapeutic range (3-5 µM). Chronic co-administration of safinamide plus l-DOPA in DA-denervated animals favored the recovery of corticostriatal long-term synaptic potentiation (LTP) and depotentiation of excitatory synaptic transmission also reducing motor deficits before the onset of LIDs. CONCLUSIONS: Safinamide, at a clinically relevant dose, optimizes the effect of l-DOPA therapy in experimental PD reducing SPNs excitability and modulating synaptic transmission. Co-administration of safinamide and l-DOPA ameliorates motor deficits.


Asunto(s)
Alanina/análogos & derivados , Antiparkinsonianos/uso terapéutico , Bencilaminas/uso terapéutico , Cuerpo Estriado/efectos de los fármacos , Ácido Glutámico , Red Nerviosa/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antiparkinsonianos/farmacología , Bencilaminas/farmacología , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Red Nerviosa/metabolismo , Técnicas de Cultivo de Órganos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Ratas , Ratas Wistar
5.
Neurobiol Dis ; 140: 104848, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32222474

RESUMEN

Energy depletion caused by ischemic brain insults may result in persistent neuronal depolarization accompanied by hyper-stimulation of ionotropic glutamate receptors and excitotoxic phenomena, possibly leading to cell death. The use of glutamate receptor antagonists, such as the AMPARs antagonist Perampanel (PER), might be a pharmacological approach to counteract the excessive over-activation of glutamate receptors providing neuroprotective effects. Using electrophysiological and molecular analyses, we investigated the effect of PER against in vitro ischemia obtained by oxygen and glucose deprivation (OGD) in rat slices of two brain structures particularly sensitive to ischemic insults, the nucleus striatum and the hippocampus. We found that in these regions PER was able to avoid the OGD-induced neuronal suffering, at low doses not reducing basal excitatory synaptic transmission and not altering long-term potentiation (LTP) induction. Furthermore, in both the analysed regions, PER blocked a pathological form of LTP, namely ischemic LTP (iLTP). Finally, we hypothesized that the protective effect of PER against OGD was due to its capability to normalize the altered synaptic localization and function of AMPAR subunits, occuring after an ischemic insult. Taken together these findings support the idea that PER is a drug potentially effective to counteract ischemic damage.


Asunto(s)
Isquemia Encefálica/fisiopatología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Piridonas/farmacología , Receptores AMPA/metabolismo , Animales , Muerte Celular , Cuerpo Estriado/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Fármacos Neuroprotectores , Nitrilos , Ratas , Ratas Wistar , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología
6.
Cephalalgia ; 39(10): 1333-1338, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30922082

RESUMEN

INTRODUCTION: Familial hemiplegic migraine 2 is a pathology linked to mutation of the ATP1A2 gene producing loss of function of the α2 Na+/K+-ATPase (NKA). W887R/+ knock-in (KI) mice are used to model the familial hemiplegic migraine 2 condition and are characterized by 50% reduced NKA expression in the brain and reduced rate of K+ and glutamate clearance by astrocytes. These alterations might, in turn, produce synaptic changes in synaptic transmission and plasticity. Memory and learning deficits observed in familial hemiplegic migraine patients could be ascribed to a possible alteration of hippocampal neuronal plasticity and measuring possible changes of long-term potentiation in familial hemiplegic migraine 2 KI mice might provide insights to strengthen this link. RESULTS: Here we have investigated synaptic plasticity in distinct hippocampal regions in familial hemiplegic migraine 2 KI mice. We show that the dentate gyrus long-term potentiation of familial hemiplegic migraine 2 mice is abnormally increased in comparison with control animals. Conversely, in the CA1 area, KI and WT mice express long-term potentiation of similar amplitude. CONCLUSIONS: The familial hemiplegic migraine 2 KI mice show region-dependent hippocampal plasticity abnormality, which might underlie some of the memory deficits observed in familial migraine.


Asunto(s)
Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Migraña con Aura/fisiopatología , Transmisión Sináptica/fisiología , Animales , Ratones , Migraña con Aura/genética , Mutación , ATPasa Intercambiadora de Sodio-Potasio/genética
7.
Brain ; 142(5): 1365-1385, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30927362

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder characterized by altered striatal dopaminergic signalling that leads to motor and cognitive deficits. Parkinson's disease is also characterized by abnormal presence of soluble toxic forms of α-synuclein that, when clustered into Lewy bodies, represents one of the pathological hallmarks of the disease. However, α-synuclein oligomers might also directly affect synaptic transmission and plasticity in Parkinson's disease models. Accordingly, by combining electrophysiological, optogenetic, immunofluorescence, molecular and behavioural analyses, here we report that α-synuclein reduces N-methyl-d-aspartate (NMDA) receptor-mediated synaptic currents and impairs corticostriatal long-term potentiation of striatal spiny projection neurons, of both direct (D1-positive) and indirect (putative D2-positive) pathways. Intrastriatal injections of α-synuclein produce deficits in visuospatial learning associated with reduced function of GluN2A NMDA receptor subunit indicating that this protein selectively targets this subunit both in vitro and ex vivo. Interestingly, this effect is observed in spiny projection neurons activated by optical stimulation of either cortical or thalamic glutamatergic afferents. We also found that treatment of striatal slices with antibodies targeting α-synuclein prevents the α-synuclein-induced loss of long-term potentiation and the reduced synaptic localization of GluN2A NMDA receptor subunit suggesting that this strategy might counteract synaptic dysfunction occurring in Parkinson's disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial/fisiología , Sinapsis/fisiología , Percepción Visual/fisiología , alfa-Sinucleína/toxicidad , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Humanos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Memoria Espacial/efectos de los fármacos , Sinapsis/efectos de los fármacos , Percepción Visual/efectos de los fármacos , alfa-Sinucleína/administración & dosificación
8.
Mov Disord ; 34(6): 832-844, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30759320

RESUMEN

OBJECTIVE: Spreading depolarization (SD) is a transient self-propagating wave of neuronal and glial depolarization coupled with large membrane ionic changes and a subsequent depression of neuronal activity. Spreading depolarization in the cortex is implicated in migraine, stroke, and epilepsy. Conversely, spreading depolarization in the striatum, a brain structure deeply involved in motor control and in Parkinson's disease (PD) pathophysiology, has been poorly investigated. METHODS: We characterized the participation of glutamatergic and dopaminergic transmission in the induction of striatal spreading depolarization by using a novel approach combining optical imaging, measurements of endogenous DA levels, and pharmacological and molecular analyses. RESULTS: We found that striatal spreading depolarization requires the concomitant activation of D1-like DA and N-methyl-d-aspartate receptors, and it is reduced in experimental PD. Chronic l-dopa treatment, inducing dyskinesia in the parkinsonian condition, increases the occurrence and speed of propagation of striatal spreading depolarization, which has a direct impact on one of the signaling pathways downstream from the activation of D1 receptors. CONCLUSION: Striatal spreading depolarization might contribute to abnormal basal ganglia activity in the dyskinetic condition and represents a possible therapeutic target. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Cuerpo Estriado/fisiopatología , Neuronas Dopaminérgicas/fisiología , Discinesia Inducida por Medicamentos/fisiopatología , Levodopa/farmacología , Neuronas/fisiología , Trastornos Parkinsonianos/fisiopatología , Transmisión Sináptica/fisiología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Antiparkinsonianos/farmacología , Cuerpo Estriado/efectos de los fármacos , Compuestos de Mostaza Nitrogenada/metabolismo , Prednisolona/metabolismo , Procarbazina/metabolismo , Ratas , Ratas Wistar , Vincristina/metabolismo
9.
Curr Neuropharmacol ; 17(10): 926-946, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30592252

RESUMEN

After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepileptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regulation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly modulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive status epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Ácido Valproico/farmacología , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Histona Desacetilasas , Humanos , Neuronas/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico
10.
Neurobiol Dis ; 118: 1-8, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29908325

RESUMEN

Among genetic abnormalities identified in Parkinson's disease (PD), mutations of the leucine-rich repeat kinase2 (LRRK2) gene, such as the G2019S missense mutation linked to enhanced kinase activity, are the most common. While the complex role of LRRK2 has not been fully elucidated, evidence that mutated kinase activity affects synaptic transmission has been reported. Thus, our aim was to explore possible early alterations of neurotransmission produced by the G2019S LRRK2 mutation in PD. We performed electrophysiological patch-clamp recordings of striatal spiny projection neurons (SPNs) in the G2019S-Lrrk2 knock-in (KI) mouse model of PD, in D1994S kinase-dead (KD), Lrrk2 knock-out (KO) and wild-type (WT) mice. In G2019S Lrrk2 KI mice, basal spontaneous glutamatergic transmission, synaptic facilitation, and NMDA/AMPA ratios were unchanged, whereas the stimulation of dopamine (DA) D2 receptor by quinpirole reduced the spontaneous and evoked excitatory postsynaptic currents (EPSC). Quinpirole reduced the EPSC amplitude of SPNs in KI but not in KD, KO and WT mice, suggesting that the enhanced LRRK2 kinase activity induced by the G2019S mutation is associated with the observed functional alteration of SPNs synaptic transmission. The effect of quinpirole was mediated by a phospholipase C (PLC)-dependent release of endocannabinoid, with subsequent activation of presynaptic cannabinoid receptor 1 and reduced release of glutamate. The key role of DA D2 receptor in reducing glutamatergic output in our LRRK2 genetic model of PD further supports the use of DA agonists in the treatment of early PD patients with LRRK2 mutations to counteract the disease progression.


Asunto(s)
Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Trastornos Parkinsonianos/tratamiento farmacológico , Quinpirol/farmacología , Quinpirol/uso terapéutico , Receptores de Dopamina D2/agonistas , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
11.
Neuropharmacology ; 135: 424-430, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29614316

RESUMEN

Lacosamide ([(R)-2-acetamido-N-benzyl-3-methoxypropanamide], LCM), is an antiepileptic that exerts anticonvulsant activity by selectively enhancing slow sodium channel inactivation. By inhibiting seizures and neuronal excitability it might therefore be a good candidate to stabilize neurons and protect them from energetic insults. Using electrophysiological analyses, we have investigated in mice the possible neuroprotective effect of LCM against in vitro ischemia obtained by oxygen and glucose deprivation (ODG), in striatal and hippocampal tissues, two brain structures particularly susceptible to ischemic injury and of pivotal importance for different form of learning and memory. We also explored in these regions the influence of LCM on firing discharge and on long-term synaptic plasticity. We found that in both areas LCM reduced the neuronal firing activity in a use-dependent manner without influencing the physiological synaptic transmission, confirming its anticonvulsant effects. Moreover, we found that this AED is able to protect, in a dose dependent manner, striatal and hippocampal neurons from energy metabolism failure produced by OGD. This neuroprotective effect does not imply impairment of long-term potentiation of striatal and hippocampal synapses and suggests that LCM might exert additional beneficial therapeutic effects beyond its use as antiepileptic.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Lacosamida/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Isquemia Encefálica/fisiopatología , Región CA1 Hipocampal/fisiopatología , Cuerpo Estriado/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
12.
Cell Death Dis ; 9(2): 204, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29434188

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder in which genetic and environmental factors synergistically lead to loss of midbrain dopamine (DA) neurons. Mutation of leucine-rich repeated kinase2 (Lrrk2) genes is responsible for the majority of inherited familial cases of PD and can also be found in sporadic cases. The pathophysiological role of this kinase has to be fully understood yet. Hyperactivation of Lrrk2 kinase domain might represent a predisposing factor for both enhanced striatal glutamatergic release and mitochondrial vulnerability to environmental factors that are observed in PD. To investigate possible alterations of striatal susceptibility to mitochondrial dysfunction, we performed electrophysiological recordings from the nucleus striatum of a G2019S Lrrk2 mouse model of PD, as well as molecular and morphological analyses of G2019S Lrrk2-expressing SH-SY5Y neuroblastoma cells. In G2019S mice, we found reduced striatal DA levels, according to the hypothesis of alteration of dopaminergic transmission, and increased loss of field potential induced by the mitochondrial complex I inhibitor rotenone. This detrimental effect is reversed by the D2 DA receptor agonist quinpirole via the inhibition of the cAMP/PKA intracellular pathway. Analysis of mitochondrial functions in G2019S Lrrk2-expressing SH-SY5Y cells revealed strong rotenone-induced oxidative stress characterized by reduced Ca2+ buffering capability and ATP synthesis, production of reactive oxygen species, and increased mitochondrial fragmentation. Importantly, quinpirole was able to prevent all these changes. We suggest that the G2019S-Lrrk2 mutation is a predisposing factor for enhanced striatal susceptibility to mitochondrial dysfunction induced by exposure to mitochondrial environmental toxins and that the D2 receptor stimulation is neuroprotective on mitochondrial function, via the inhibition of cAMP/PKA intracellular pathway. We suggest new possible neuroprotective strategies for patients carrying this genetic alteration based on drugs specifically targeting Lrrk2 kinase domain and mitochondrial functionality.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mesencéfalo/metabolismo , Neuroprotección , Enfermedad de Parkinson/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Dopamina/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Mesencéfalo/patología , Ratones , Ratones Mutantes , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Receptores de Dopamina D2/genética
13.
Neurobiol Dis ; 113: 97-108, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29325869

RESUMEN

During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Microglía/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Animales , GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico/antagonistas & inhibidores , Técnicas de Cultivo de Órganos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Azida Sódica/farmacología , Azida Sódica/uso terapéutico
14.
Neurobiol Aging ; 48: 161-171, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27701029

RESUMEN

Experimental and clinical observations indicate that amyloid-ß1-42 (Aß1-42) peptide not only represents a major actor in neurodegenerative mechanisms but also induce hyperexcitation in individual neurons and neural circuits. In this abnormal excitability, possibly leading to seizures, the D1 dopamine (DA) receptors may play a role. Cerebrospinal fluid levels of Aß1-42 were measured in patients with late-onset epilepsy of unknown etiology. Moreover, the effect of amyloid peptide on the hippocampal epileptic threshold and synaptic plasticity and its link to D1 receptor function were tested in experimental mouse model of cerebral amyloidosis and in acute model of Aß1-42-induced neurotoxicity. Among 272 evaluated epileptic patients, aged >55 years, 35 suffered from late-onset epilepsy of unknown etiology. In these subjects, cerebrospinal fluid Aß1-42 levels were measured. The effects of Aß1-42, amyloid oligomers, and D1 receptor modulation on epileptic threshold were analyzed by electrophysiological recordings in the dentate gyrus of mice hippocampal slices. We found that Aß1-42 levels were significantly decreased in cerebrospinal fluid of patients with late-onset epilepsy of unknown etiology with respect to controls suggesting the cerebral deposition of this peptide in these patients. Aß1-42 enhanced epileptic activity in mice through a mechanism involving increased surface expression of D1 receptor, and this effect was mimicked by D1 receptor stimulation and blocked by SCH 23390, a D1 receptor antagonist. Aß1-42 may contribute to the pathophysiology of late-onset epilepsy of unknown origin. Our preclinical findings indicate that the D1 receptor is involved in mediating the epileptic effects of Aß1-42. This novel link between Aß1-42 and D1 receptor signaling might represent a potential therapeutic target.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Epilepsia/etiología , Fragmentos de Péptidos/metabolismo , Receptores de Dopamina D1/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Benzazepinas/farmacología , Modelos Animales de Enfermedad , Epilepsia/genética , Femenino , Humanos , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , Receptores de Dopamina D1/antagonistas & inhibidores
15.
Front Cell Neurosci ; 9: 192, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074768

RESUMEN

17ß-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson's disease.

16.
Philos Trans R Soc Lond B Biol Sci ; 370(1672)2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26009763

RESUMEN

The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients.


Asunto(s)
Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Hipocampo/fisiopatología , Levodopa/efectos adversos , Levodopa/farmacología , Plasticidad Neuronal/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Dopamina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...