Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175706

RESUMEN

The purpose of this study was to examine whether myeloid dendritic cells (mDCs) from patients with multiple sclerosis (MS) and healthy controls (HCs) become similarly tolerogenic when exposed to IL-27 as this may represent a potential mechanism of autoimmune dysregulation. Our study focused on natural mDCs that were isolated from HCs and MS patient peripheral blood mononuclear cells (PBMCs). After a 24-h treatment with IL-27 ± lipopolysaccharide (LPS), the mDCs were either harvested to identify IL-27-regulated gene expression or co-cultured with naive T-cells to measure how the treated DC affected T-cell proliferation and cytokine secretion. mDCs isolated from HCs but not untreated MS patients became functionally tolerogenic after IL-27 treatment. Although IL-27 induced both HC and untreated MS mDCs to produce similar amounts of IL-10, the tolerogenic HC mDCs expressed PD-L2, IDO1, and SOCS1, while the non-tolerogenic untreated MS mDCs expressed IDO1 and IL-6R. Cytokine and RNA analyses identified two signature blocks: the first identified genes associated with mDC tolerizing responses to IL-27, while the second was associated with the presence of MS. In contrast to mDCs from untreated MS patients, mDCs from HCs and IFNb-treated MS patients became tolerogenic in response to IL-27. The genes differentially expressed in the different donor IL-27-treated mDCs may contain targets that regulate mDC tolerogenic responses.


Asunto(s)
Interleucina-27 , Esclerosis Múltiple , Humanos , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas , Interleucina-27/metabolismo , Leucocitos Mononucleares/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/metabolismo , Linfocitos T/metabolismo
2.
Genome Biol ; 21(1): 33, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039742

RESUMEN

BACKGROUND: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown. RESULTS: We induce chemoresistant and G0 leukemic cells by serum starvation or chemotherapy treatment. To study post-transcriptional regulation in G0 leukemic cells, we systematically analyzed their transcriptome, translatome, and proteome. We find that our resistant G0 cells recapitulate gene expression profiles of in vivo chemoresistant leukemic and G0 models. In G0 cells, canonical translation initiation is inhibited; yet we find that inflammatory genes are highly translated, indicating alternative post-transcriptional regulation. Importantly, AU-rich elements (AREs) are significantly enriched in the upregulated G0 translatome and transcriptome. Mechanistically, we find the stress-responsive p38 MAPK-MK2 signaling pathway stabilizes ARE mRNAs by phosphorylation and inactivation of mRNA decay factor, Tristetraprolin (TTP) in G0. This permits expression of ARE mRNAs that promote chemoresistance. Conversely, inhibition of TTP phosphorylation by p38 MAPK inhibitors and non-phosphorylatable TTP mutant decreases ARE-bearing TNFα and DUSP1 mRNAs and sensitizes leukemic cells to chemotherapy. Furthermore, co-inhibiting p38 MAPK and TNFα prior to or along with chemotherapy substantially reduces chemoresistance in primary leukemic cells ex vivo and in vivo. CONCLUSIONS: These studies uncover post-transcriptional regulation underlying chemoresistance in leukemia. Our data reveal the p38 MAPK-MK2-TTP axis as a key regulator of expression of ARE-bearing mRNAs that promote chemoresistance. By disrupting this pathway, we develop an effective combination therapy against chemosurvival.


Asunto(s)
Elementos Ricos en Adenilato y Uridilato , Resistencia a Antineoplásicos , Procesamiento Postranscripcional del ARN , Tristetraprolina/metabolismo , Animales , Ciclo Celular , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células K562 , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Células THP-1 , Transcriptoma , Tristetraprolina/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Neurol Neuroimmunol Neuroinflamm ; 6(2): e530, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30800720

RESUMEN

Objective: To classify and immunologically characterize persons with MS based on brain lesions and atrophy and their associated microRNA profiles. Methods: Cerebral T2-hyperintense lesion volume (T2LV) and brain parenchymal fraction (BPF) were quantified and used to define MRI phenotypes as follows: type I: low T2LV, low atrophy; type II: high T2LV, low atrophy; type III: low T2LV, high atrophy; type IV: high T2LV, high atrophy, in a large cross-sectional cohort (n = 1,088) and a subset with 5-year lngitudinal follow-up (n = 153). Serum miRNAs were assessed on a third MS cohort with 2-year MRI phenotype stability (n = 98). Results: One-third of the patients had lesion-atrophy dissociation (types II or III) in both the cross-sectional and longitudinal cohorts. At 5 years, all phenotypes had progressive atrophy (p < 0.001), disproportionally in type II (BPF -2.28%). Only type IV worsened in physical disability. Types I and II showed a 5-year MRI phenotype conversion rate of 33% and 46%, whereas III and IV had >90% stability. Type II switched primarily to IV (91%); type I switched primarily to II (47%) or III (37%). Baseline higher age (p = 0.006) and lower BPF (p < 0.001) predicted 5-year phenotype conversion. Each MRI phenotype demonstrated an miRNA signature whose underlying biology implicates blood-brain barrier pathology: hsa.miR.22.3p, hsa.miR.361.5p, and hsa.miR.345.5p were the most valid differentiators of MRI phenotypes. Conclusions: MRI-defined MS phenotypes show high conversion rates characterized by the continuation of either predominant neurodegeneration or inflammation and support the partial independence of these 2 measures. MicroRNA signatures of these phenotypes suggest a role for blood-brain barrier integrity.


Asunto(s)
Encéfalo/patología , MicroARNs/metabolismo , Esclerosis Múltiple/patología , Adulto , Atrofia/patología , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Estudios Retrospectivos
4.
Sci Immunol ; 2(11)2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28763794

RESUMEN

Regulatory T cells (Tregs) promote cancer by suppressing antitumor immune responses. We found that anti-LAP antibody, which targets the latency-associated peptide (LAP)/transforming growth factor-ß (TGF-ß) complex on Tregs and other cells, enhances antitumor immune responses and reduces tumor growth in models of melanoma, colorectal carcinoma, and glioblastoma. Anti-LAP decreases LAP+ Tregs, tolerogenic dendritic cells, and TGF-ß secretion and is associated with CD8+ T cell activation. Anti-LAP increases infiltration of tumors by cytotoxic CD8+ T cells and reduces CD103+ CD8 T cells in draining lymph nodes and the spleen. We identified a role for CD103+ CD8 T cells in cancer. Tumor-associated CD103+ CD8 T cells have a tolerogenic phenotype with increased expression of CTLA-4 and interleukin-10 and decreased expression of interferon-γ, tumor necrosis factor-α, and granzymes. Adoptive transfer of CD103+ CD8 T cells promotes tumor growth, whereas CD103 blockade limits tumorigenesis. Thus, anti-LAP targets multiple immunoregulatory pathways and represents a potential approach for cancer immunotherapy.

5.
JAMA Neurol ; 74(3): 275-285, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114622

RESUMEN

Importance: MicroRNAs (miRNAs) are promising multiple sclerosis (MS) biomarkers. Establishing the association between miRNAs and magnetic resonance imaging (MRI) measures of disease severity will help define their significance and potential impact. Objective: To correlate circulating miRNAs in the serum of patients with MS to brain and spinal MRI. Design, Setting, and Participants: A cross-sectional study comparing serum miRNA samples with MRI metrics was conducted at a tertiary MS referral center. Two independent cohorts (41 and 79 patients) were retrospectively identified from the Comprehensive Longitudinal Investigation of Multiple Sclerosis at the Brigham and Women's Hospital. Expression of miRNA was determined by locked nucleic acid-based quantitative real-time polymerase chain reaction. Spearman correlation coefficients were used to test the association between miRNA and brain lesions (T2 hyperintense lesion volume [T2LV]), the ratio of T1 hypointense lesion volume [T1LV] to T2LV [T1:T2]), brain atrophy (whole brain and gray matter), and cervical spinal cord lesions (T2LV) and atrophy. The study was conducted from December 2013 to April 2016. Main Outcomes and Measures: miRNA expression. Results: Of the 120 patients included in the study, cohort 1 included 41 participants (7 [17.1%] men), with mean (SD) age of 47.7 (9.5) years; cohort 2 had 79 participants (26 [32.9%] men) with a mean (SD) age of 43.0 (7.5) years. Associations between miRNAs and MRIs were both protective and pathogenic. Regarding miRNA signatures, a topographic specificity differed for the brain vs the spinal cord, and the signature differed between T2LV and atrophy/destructive measures. Four miRNAs showed similar significant protective correlations with T1:T2 in both cohorts, with the highest for hsa.miR.143.3p (cohort 1: Spearman correlation coefficient rs = -0.452, P = .003; cohort 2: rs = -0.225, P = .046); the others included hsa.miR.142.5p (cohort 1: rs = -0.424, P = .006; cohort 2: rs = -0.226, P = .045), hsa.miR.181c.3p (cohort 1: rs = -0.383, P = .01; cohort 2: rs = -0.222, P = .049), and hsa.miR.181c.5p (cohort 1: rs = -0.433, P = .005; cohort 2: rs = -0.231, P = .04). In the 2 cohorts, hsa.miR.486.5p (cohort 1: rs = 0.348, P = .03; cohort 2: rs = 0.254, P = .02) and hsa.miR.92a.3p (cohort 1: rs = 0.392, P = .01; cohort 2: rs = 0.222, P = .049) showed similar significant pathogenic correlations with T1:T2; hsa.miR.375 (cohort 1: rs = -0.345, P = .03; cohort 2: rs = -0.257, P = .022) and hsa.miR.629.5p (cohort 1: rs = -0.350, P = .03; cohort 2: rs = -0.269, P = .02) showed significant pathogenic correlations with brain atrophy. Although we found several miRNAs associated with MRI outcomes, none of these associations remained significant when correcting for multiple comparisons, suggesting that further validation of our findings is needed. Conclusions and Relevance: Serum miRNAs may serve as MS biomarkers for monitoring disease progression and act as surrogate markers to identify underlying disease processes.


Asunto(s)
Imagen por Resonancia Magnética , MicroARNs/sangre , Esclerosis Múltiple/sangre , Esclerosis Múltiple/tratamiento farmacológico , Adolescente , Adulto , Atrofia/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Cohortes , Evaluación de la Discapacidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , MicroARNs/genética , Persona de Mediana Edad , ARN Mensajero/sangre , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología , Estadísticas no Paramétricas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...