Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 49(7): 6019-6028, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35403940

RESUMEN

INTRODUCTION: Autism spectrum disorder (ASD) is an increasing concern among the Iraqi Arab population. The genetic alterations that cause ASD are likely to converge at the synapse. This study investigated polymorphisms in the GABAA receptor subunit (GABRG3) and the RELN gene as putative biomarkers of ASD in a pediatric population in Iraq. METHODS: The case control study included 60 patients with a clinical diagnosis of ASD (mild, moderate, or severe) according to DSM-IV criteria and matched healthy controls (n = 60). Blood samples were collected for DNA genotyping of SNPs rs736707 and rs208129 for RELN and GABRG3 using allele specific PCR. Assessment of genotype and allele distributions in patient groups used odd ratios (OR) with 95% confidence intervals and the Chi-square test. All statistical analysis was performed used SPSS software. RESULT: The patient cohort was highly consanguineous, with increased ratio (p > 0.05) of males to females (3:1) in both ASD (mean age, 6.66 ± 3.05) and controls (mean age, 5.76 ± 2.3). Both GABRG3 rs208129 genotypes TT (OR 4.33, p = 0.0015) and TA (OR 0.259, P = 0.008), and the T and A alleles were significantly associated with ASD. The RELN rs736707 TC genotype (OR 2.626, P = 0.034) was the only significant association with ASD. CONCLUSION: GABRG3 SNP rs208129 is a leading biomarker to predict genetic vulnerability to ASD in Iraqi Arabs. Expanded SNP panels and increased sample sizes are required for future GABRG3 studies, and to reach a consensus on RELN utility. Future ASD screening programs in Iraq should include genetic metrics in addition to clinical phenotype assessments.


Asunto(s)
Trastorno del Espectro Autista , Proteína Reelina/genética , Árabes/genética , Trastorno del Espectro Autista/genética , Estudios de Casos y Controles , Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Irak , Masculino , Proteínas del Tejido Nervioso/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , Receptores de GABA-A/genética , Serina Endopeptidasas/genética
2.
Cell Death Dis ; 11(11): 1020, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257690

RESUMEN

Colorectal cancer is a molecularly heterogeneous disease. Responses to genotoxic chemotherapy in the adjuvant or palliative setting vary greatly between patients, and colorectal cancer cells often resist chemotherapy by evading apoptosis. Antagonists of an inhibitor of apoptosis proteins (IAPs) can restore defective apoptosis signaling by degrading cIAP1 and cIAP2 proteins and by inhibition of XIAP. Due to the multiple molecular mechanisms-of-action of these targets, responses to IAP antagonist may differ between molecularly distinct colon cancer cells. In this study, responses to the IAP antagonist Birinapant and oxaliplatin/5-fluorouracil (5-FU) were investigated in 14 colon cancer cell lines, representing the consensus molecular subtypes (CMS). Treatment with Birinapant alone did not result in a substantial increase in apoptotic cells in this cell line panel. Annexin-V/PI assays quantified by flow cytometry and high-content screening showed that Birinapant increased responses of CMS1 and partially CMS3 cell lines to oxaliplatin/5-FU, whereas CMS2 cells were not effectively sensitized. FRET-based imaging of caspase-8 and -3 activation validated these differences at the single-cell level, with CMS1 cells displaying sustained activation of caspase-8-like activity during Birinapant and oxaliplatin/5-FU co-treatment, ultimately activating the intrinsic mitochondrial apoptosis pathway. In CMS2 cell lines, Birinapant exhibited synergistic effects in combination with TNFα, suggesting that Birinapant can restore extrinsic apoptosis signaling in the context of inflammatory signals in this subtype. To explore this further, we co-cultured CMS2 and CMS1 colon cancer cells with peripheral blood mononuclear cells. We observed increased cell death during Birinapant single treatment in these co-cultures, which was abrogated by anti-TNFα-neutralizing antibodies. Collectively, our study demonstrates that IAP inhibition is a promising modulator of response to oxaliplatin/5-FU in colorectal cancers of the CMS1 subtype, and may show promise as in the CMS2 subtype, suggesting that molecular subtyping may aid as a patient stratification tool for IAP antagonists in this disease.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Dipéptidos/uso terapéutico , Indoles/uso terapéutico , Apoptosis , Dipéptidos/farmacología , Humanos , Indoles/farmacología
3.
Front Genet ; 5: 233, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25152750

RESUMEN

Thymidine kinase 1 (TK1) is a salvage enzyme that phosphorylates thymidine, imported from surrounding fluids, to create dTMP, which is further phosphorylated to the DNA precursor dTTP. TK1 deficiency has for a long time been known to cause increased cellular sensitivity to DNA damage. We have examined preferential strand break repair of DNA domains in TK1(+) and TK1(-) clones of the Raji cell line, by the Comet-FISH technique, in bulk DNA and in the actively transcribed tumor suppressor (TP53) and human telomerase reverse transcriptase (hTERT) gene regions, over 1 h after 5Gy γ-irradiation. Results showed that repair of the TP53 and hTERT gene regions was more efficient in TK1(+) compared to TK1(-) cells, a trend also reflected to a lesser degree in genomic DNA repair between the cell-lines. The targeted gene-specific repair in TK(+) cells occurred rapidly, mainly over the first 15 min repair-period. Therefore, TK1 is needed for preferential repair of actively transcribed regions, through a previously unsuspected mechanism. In principle, TK1 could exert its protective effects through supply of a supplementary dTTP pool for accurate repair of damaged genes; but Raji TK1(+) cells in thymidine free media still show preferential repair of transcribed regions. TK1 therefore does not exert its protective effects through dTTP pools, but through another unidentified mechanism, which affects sensitivity to and mutagenicity by DNA damaging agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...