Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903257

RESUMEN

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Tuberosa , Animales , Ratones , Enfermedad de Alzheimer/genética , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Dendritas/metabolismo , Mamíferos/metabolismo , Esclerosis Tuberosa/genética
2.
Front Psychiatry ; 14: 1296527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38268565

RESUMEN

Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. In the mature brain, inhibitory GABAergic signaling is critical in maintaining neuronal homeostasis and vital human behaviors such as cognition, emotion, and motivation. While classically known to inhibit neuronal function under physiological conditions, previous research indicates a paradoxical switch from inhibitory to excitatory GABAergic signaling that is implicated in several neurological disorders. Various mechanisms have been proposed to contribute to the excitatory switch such as chloride ion dyshomeostasis, alterations in inhibitory receptor expression, and modifications in GABAergic synaptic plasticity. Of note, the hypothesized mechanisms underlying excitatory GABAergic signaling are highlighted in a number of neurodevelopmental, substance use, stress, and neurodegenerative disorders. Herein, we present an updated review discussing the presence of excitatory GABAergic signaling in various neurological disorders, and their potential contributions towards disease pathology.

3.
J Vis Exp ; (185)2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35867038

RESUMEN

Synapses are the site of communication between neurons. Neuronal circuit strength is related to synaptic density, and the breakdown of synapses is characteristic of disease states like major depressive disorder (MDD) and Alzheimer's disease. Traditional techniques to investigate synapse numbers include genetic expression of fluorescent markers (e.g., green fluorescent protein (GFP)), dyes that fill a neuron (e.g., carbocyanine dye, DiI), and immunofluorescent detection of spine markers (e.g., postsynaptic density 95 (PSD95)). A major caveat to these proxy techniques is that they only identify postsynaptic changes. Yet, a synapse is a connection between a presynaptic terminal and a postsynaptic spine. The gold standard for measuring synapse formation/elimination requires time-consuming electron microscopy or array tomography techniques. These techniques require specialized training and costly equipment. Further, only a limited number of neurons can be assessed and are used to represent changes to an entire brain region. DetectSyn is a rapid fluorescent technique that identifies changes to synapse formation or elimination due to a disease state or drug activity. DetectSyn utilizes a rapid proximity ligation assay to detect juxtaposed pre- and postsynaptic proteins and standard fluorescent microscopy, a technique readily available to most laboratories. Fluorescent detection of the resulting puncta allows for quick and unbiased analysis of experiments. DetectSyn provides more representative results than electron microscopy because larger areas can be analyzed than a limited number of fluorescent neurons. Moreover, DetectSyn works for in vitro cultured neurons and fixed tissue slices. Finally, a method is provided to analyze the data collected from this technique. Overall, DetectSyn offers a procedure for detecting relative changes in synapse density across treatments or disease states and is more accessible than traditional techniques.


Asunto(s)
Trastorno Depresivo Mayor , Células Cultivadas , Colorantes/metabolismo , Trastorno Depresivo Mayor/metabolismo , Hipocampo , Humanos , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA