Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(15): 11641-11648, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38546720

RESUMEN

It has long been understood that dilute samples of chiral molecules such as rarefied gases should exhibit Rayleigh optical activity. We extend the existing theory by accounting for molecular dynamics and correlations, thus obtaining a more general theory of Rayleigh-Brillouin optical activity applicable to dense samples such as neat liquids.

2.
J Med Chem ; 65(3): 1898-1914, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35104933

RESUMEN

RAS is a major anticancer drug target which requires membrane localization to activate downstream signal transduction. The direct inhibition of RAS has proven to be challenging. Here, we present a novel strategy for targeting RAS by stabilizing its interaction with the prenyl-binding protein PDE6D and disrupting its localization. Using rationally designed RAS point mutations, we were able to stabilize the RAS:PDE6D complex by increasing the affinity of RAS for PDE6D, which resulted in the redirection of RAS to the cytoplasm and the primary cilium and inhibition of oncogenic RAS/ERK signaling. We developed an SPR fragment screening and identified fragments that bind at the KRAS:PDE6D interface, as shown through cocrystal structures. Finally, we show that the stoichiometric ratios of KRAS:PDE6D vary in different cell lines, suggesting that the impact of this strategy might be cell-type-dependent. This study forms the foundation from which a potential anticancer small-molecule RAS:PDE6D complex stabilizer could be developed.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Péptidos/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/análisis , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
Cancer Res ; 78(22): 6509-6522, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30279244

RESUMEN

Glioblastoma (GBM) is an aggressive and incurable primary brain tumor that causes severe neurologic, cognitive, and psychologic symptoms. Symptoms are caused and exacerbated by the infiltrative properties of GBM cells, which enable them to pervade the healthy brain and disrupt normal function. Recent research has indicated that although radiotherapy (RT) remains the most effective component of multimodality therapy for patients with GBM, it can provoke a more infiltrative phenotype in GBM cells that survive treatment. Here, we demonstrate an essential role of the actin-myosin regulatory kinase myotonic dystrophy kinase-related CDC42-binding kinase (MRCK) in mediating the proinvasive effects of radiation. MRCK-mediated invasion occurred via downstream signaling to effector molecules MYPT1 and MLC2. MRCK was activated by clinically relevant doses per fraction of radiation, and this activation was concomitant with an increase in GBM cell motility and invasion. Furthermore, ablation of MRCK activity either by RNAi or by inhibition with the novel small-molecule inhibitor BDP-9066 prevented radiation-driven increases in motility both in vitro and in a clinically relevant orthotopic xenograft model of GBM. Crucially, treatment with BDP-9066 in combination with RT significantly increased survival in this model and markedly reduced infiltration of the contralateral cerebral hemisphere.Significance: An effective new strategy for the treatment of glioblastoma uses a novel, anti-invasive chemotherapeutic to prevent infiltration of the normal brain by glioblastoma cells.Cancer Res; 78(22); 6509-22. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Actinas/química , Animales , Antineoplásicos/farmacología , Neoplasias Encefálicas/radioterapia , Miosinas Cardíacas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Femenino , Glioblastoma/radioterapia , Humanos , Ratones , Ratones Desnudos , Microscopía Fluorescente , Cadenas Ligeras de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Miosinas/química , Invasividad Neoplásica , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
4.
Cancer Res ; 78(8): 2096-2114, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29382705

RESUMEN

The myotonic dystrophy-related Cdc42-binding kinases MRCKα and MRCKß contribute to the regulation of actin-myosin cytoskeleton organization and dynamics, acting in concert with the Rho-associated coiled-coil kinases ROCK1 and ROCK2. The absence of highly potent and selective MRCK inhibitors has resulted in relatively little knowledge of the potential roles of these kinases in cancer. Here, we report the discovery of the azaindole compounds BDP8900 and BDP9066 as potent and selective MRCK inhibitors that reduce substrate phosphorylation, leading to morphologic changes in cancer cells along with inhibition of their motility and invasive character. In over 750 human cancer cell lines tested, BDP8900 and BDP9066 displayed consistent antiproliferative effects with greatest activity in hematologic cancer cells. Mass spectrometry identified MRCKα S1003 as an autophosphorylation site, enabling development of a phosphorylation-sensitive antibody tool to report on MRCKα status in tumor specimens. In a two-stage chemical carcinogenesis model of murine squamous cell carcinoma, topical treatments reduced MRCKα S1003 autophosphorylation and skin papilloma outgrowth. In parallel work, we validated a phospho-selective antibody with the capability to monitor drug pharmacodynamics. Taken together, our findings establish an important oncogenic role for MRCK in cancer, and they offer an initial preclinical proof of concept for MRCK inhibition as a valid therapeutic strategy.Significance: The development of selective small-molecule inhibitors of the Cdc42-binding MRCK kinases reveals their essential roles in cancer cell viability, migration, and invasive character. Cancer Res; 78(8); 2096-114. ©2018 AACR.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Descubrimiento de Drogas , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/enzimología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Neoplasias Cutáneas/enzimología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Opt Express ; 25(17): 20950-20951, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29041771

RESUMEN

We present a correction to parts of Fig. 5, Fig. 6 and Fig. 7, relating to the Purcell factors and Lamb shifts, due to an incorrect renormalization used in our custom Fortran code. The resulting corrections to some of the Q-factors are large, but do not affect the conclusions of the original manuscript.

6.
Sci Rep ; 7(1): 14191, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079739

RESUMEN

We analyze the enhancement of the rates of both the emission and the far field radiation for dipoles placed in the gap between a metallic nanorod, or nanosphere, and a metallic substrate. For wavelengths between 150 nm and 650 nm, the response of the gapped nanostructures considered in this work is dominated by few principal modes of the nanoparticle, which include self-consistently the effect of the substrate. For wavelengths shorter than 370 nm, the far field radiative enhancements of aluminum nanostructures are significantly higher than those for gold or silver. With aluminum, bright mode resonances are tunable over tens or hundreds of nanometers by changing the size of the nanoparticle and have far field radiative enhancements of up to three orders of magnitude. These results provide a road map to label-free detection of many emitters too weakly fluorescent for present approaches.

7.
Opt Express ; 25(4): 4162-4179, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241622

RESUMEN

We determine how to alter the properties of the quantum vacuum at ultraviolet wavelengths to simultaneously enhance the spontaneous transition rates and the far field detection rate of quantum emitters. We find the response of several complex nanostructures in the 200 - 400 nm range, where many organic molecules have fluorescent responses, using an analytic decomposition of the electromagnetic response in terms of continuous spectra of plane waves and discrete sets of modes. Coupling a nanorod with an aluminum substrate gives decay rates up to 2.7 × 103 times larger than the decay rate in vacuum and enhancements of 824 for the far field emission into the entire upper semi-space and of 2.04 × 103 for emission within a cone with a 60° semi-angle. This effect is due to both an enhancement of the field at the emitter's position and a reshaping of the radiation patterns near mode resonances and cannot be obtained by replacing the aluminum substrate with a second nanoparticle or with a fused silica substrate. These large decay rates and far field enhancement factors will be very useful in the detection of fluorescence signals, as these resonances can be shifted by changing the dimensions of the nanorod. Moreover, these nanostructures have potential for nano-lasing because the Q factors of these resonances can reach 107.9, higher than the Q factors observed in nano-lasers.

8.
Sci Data ; 2: 150064, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26601699

RESUMEN

We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts.

9.
Sci Rep ; 5: 12040, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26155833

RESUMEN

We propose a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. We derive conditions on the external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. The control introduces narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts.

10.
Cell Commun Signal ; 12: 54, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-25288205

RESUMEN

BACKGROUND: The myotonic dystrophy kinase-related CDC42-binding kinases MRCKα and MRCKß regulate actin-myosin contractility and have been implicated in cancer metastasis. Along with the related ROCK1 and ROCK2 kinases, the MRCK proteins initiate signalling events that lead to contractile force generation which powers cancer cell motility and invasion. A potential strategy for cancer therapy is to reduce metastasis by blocking MRCK activity, either alone or in combination with ROCK inhibition. However, to date no potent small molecule inhibitors have been developed with selectivity towards MRCK. RESULTS: Screening a kinase-focused small molecule chemical library resulted in the identification of compounds with inhibitory activity towards MRCK. Medicinal chemistry combined with in vitro enzyme profiling led to the discovery of 4-chloro-1-(4-piperidyl)-N-[5-(2-pyridyl)-1H-pyrazol-4-yl]pyrazole-3-carboxamide (BDP00005290; abbreviated as BDP5290) as a potent MRCK inhibitor. X-ray crystallography of the MRCKß kinase domain in complex with BDP5290 revealed how this ligand interacts with the nucleotide binding pocket. BDP5290 demonstrated marked selectivity for MRCKß over ROCK1 or ROCK2 for inhibition of myosin II light chain (MLC) phosphorylation in cells. While BDP5290 was able to block MLC phosphorylation at both cytoplasmic actin stress fibres and peripheral cortical actin bundles, the ROCK selective inhibitor Y27632 primarily reduced MLC phosphorylation on stress fibres. BDP5290 was also more effective at reducing MDA-MB-231 breast cancer cell invasion through Matrigel than Y27632. Finally, the ability of human SCC12 squamous cell carcinoma cells to invade a three-dimensional collagen matrix was strongly inhibited by 2 µM BDP5290 but not the identical concentration of Y27632, despite equivalent inhibition of MLC phosphorylation. CONCLUSIONS: BDP5290 is a potent MRCK inhibitor with activity in cells, resulting in reduced MLC phosphorylation, cell motility and tumour cell invasion. The discovery of this compound will enable further investigations into the biological activities of MRCK proteins and their contributions to cancer progression.


Asunto(s)
Antineoplásicos/farmacología , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Amidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Proteína Quinasa de Distrofia Miotónica/metabolismo , Invasividad Neoplásica , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...