Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374364

RESUMEN

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Asunto(s)
Señales (Psicología) , Comportamiento de Búsqueda de Drogas , Hipocampo , Locus Coeruleus , Autoadministración , Animales , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratas , Femenino , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Morfina/farmacología , Morfina/administración & dosificación , Ratas Sprague-Dawley , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Trastornos Relacionados con Opioides/fisiopatología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología
2.
Pain ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38015628

RESUMEN

ABSTRACT: Neuropathic pain causes both sensory and emotional maladaptation. Preclinical animal studies of neuropathic pain-induced negative affect could result in novel insights into the mechanisms of chronic pain. Modeling pain-induced negative affect, however, is variable across research groups and conditions. The same injury may or may not produce robust negative affective behavioral responses across different species, strains, and laboratories. Here, we sought to identify negative affective consequences of the spared nerve injury model on C57BL/6J male and female mice. We found no significant effect of spared nerve injury across a variety of approach-avoidance conflict, hedonic choice, and coping strategy assays. We hypothesized these inconsistencies may stem in part from the short test duration of these assays. To test this hypothesis, we used the homecage-based Feeding Experimentation Device version 3 to conduct 12-hour, overnight progressive ratio testing to determine whether mice with chronic spared nerve injury had decreased motivation to earn palatable food rewards. Our data demonstrate that despite equivalent task learning, spared nerve injury mice are less motivated to work for a sugar pellet than sham controls. Furthermore, when we normalized behavioral responses across all the behavioral assays we tested, we found that a combined normalized behavioral score is predictive of injury state and significantly correlates with mechanical thresholds. Together, these results suggest that homecage-based operant behaviors provide a useful platform for modeling nerve injury-induced negative affect and that valuable pain-related information can arise from agglomerative data analyses across behavioral assays-even when individual inferential statistics do not demonstrate significant mean differences.

3.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961541

RESUMEN

The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.

4.
bioRxiv ; 2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37461475

RESUMEN

Most animal models of neuropathic pain use targeted nerve injuries quantified with motor reflexive measures in response to an applied noxious stimulus. These motor reflexive measures can only accurately represent a pain response if motor function in also intact. The commonly used spared nerve injury (SNI) model, however, damages the tibial and common peroneal nerves that should result in motor phenotypes (i.e., an immobile or "flail" foot) not typically captured in sensory assays. To test the extent of these issues, we used DeepLabCut, a deep learning-based markerless pose estimation tool to quantify spontaneous limb position in C57BL/6J mice during tail suspension following either SNI or sham surgery. Using this granular detail, we identified the expected flail foot-like impairment, but we also found SNI mice hold their injured limb closer to the body midline compared to shams. These phenotypes were not present in the Complete Freunds Adjuvant model of inflammatory pain and were not reversed by multiple analgesics with different mechanisms of action, suggesting these SNI-specific phenotypes are not directly related to pain. Together these results suggest SNI causes previously undescribed phenotypes unrelated to altered sensation that are likely underappreciated while interpreting preclinical pain research outcomes.

5.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778492

RESUMEN

The endogenous opioid peptide systems are critical for analgesia, reward processing, and affect, but research on their release dynamics and function has been challenging. Here, we have developed microimmunoelectrodes (MIEs) for the electrochemical detection of opioid peptides using square-wave voltammetry. Briefly, a voltage is applied to the electrode to cause oxidation of the tyrosine residue on the opioid peptide of interest, which is detected as current. To provide selectivity to these voltammetric measurements, the carbon fiber surface of the MIE is coated with an antiserum selective to the opioid peptide of interest. To test the sensitivity of the MIEs, electrodes are immersed in solutions containing different concentrations of opioid peptides, and peak oxidative current is measured. We show that dynorphin antiserum-coated electrodes are sensitive to increasing concentrations of dynorphin in the attomolar range. To confirm selectivity, we also measured the oxidative current from exposure to tyrosine and other opioid peptides in solution. Our data show that dynorphin antiserum-coated MIEs are sensitive and selective for dynorphin with little to no oxidative current observed in met-enkephalin and tyrosine solutions. Additionally, we demonstrate the utility of these MIEs in an in vitro brain slice preparation using bath application of dynorphin as well as optogenetic activation of dynorphin release. Future work aims to use MIEs in vivo for real-time, rapid detection of endogenous opioid peptide release in awake, behaving animals.

6.
bioRxiv ; 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36711943

RESUMEN

Age-associated reduced motivation is a hallmark of neuropsychiatric disorders in the elderly. In our rapidly aging societies, it is critical to keep motivation levels high enough to promote healthspan and lifespan. However, how motivation is reduced during aging remains unknown. Here, we used multiple mouse models to evaluate motivation and related affective states in young and old mice. We also compared the effect of social isolation, a common stressor, to those of aging. We found that both social isolation and aging decreased motivation in mice, but that Bdnf expression in the ventral tegmental area (VTA) was selectively decreased during aging. Furthermore, VTA-specific Bdnf knockdown in young mice recapitulated reduced motivation observed in old mice. These results demonstrate that maintaining Bdnf expression in the VTA could promote motivation to engage in effortful activities and potentially prevent age-associated neuropsychiatric disorders.

7.
Nat Protoc ; 18(1): 3-21, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36271159

RESUMEN

This Protocol Extension describes the low-cost production of rapidly customizable optical neural probes for in vivo optogenetics. We detail the use of a 3D printer to fabricate minimally invasive microscale inorganic light-emitting-diode-based neural probes that can control neural circuit activity in freely behaving animals, thus extending the scope of two previously published protocols describing the fabrication and implementation of optoelectronic devices for studying intact neural systems. The 3D-printing fabrication process does not require extensive training and eliminates the need for expensive materials, specialized cleanroom facilities and time-consuming microfabrication techniques typical of conventional manufacturing processes. As a result, the design of the probes can be quickly optimized, on the basis of experimental need, reducing the cost and turnaround for customization. For example, 3D-printed probes can be customized to target multiple brain regions or scaled up for use in large animal models. This protocol comprises three procedures: (1) probe fabrication, (2) wireless module preparation and (3) implantation for in vivo assays. For experienced researchers, neural probe and wireless module fabrication requires ~2 d, while implantation should take 30-60 min per animal. Time required for behavioral assays will vary depending on the experimental design and should include at least 5 d of animal handling before implantation of the probe, to familiarize each animal to their handler, thus reducing handling stress that may influence the result of the behavioral assays. The implementation of customized probes improves the flexibility in optogenetic experimental design and increases access to wireless probes for in vivo optogenetic research.


Asunto(s)
Encéfalo , Prótesis e Implantes , Animales , Optogenética/métodos , Impresión Tridimensional , Tecnología Inalámbrica
8.
Nat Biomed Eng ; 6(6): 771-786, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34824397

RESUMEN

The use of rodents to acquire understanding of the function of neural circuits and of the physiological, genetic and developmental underpinnings of behaviour has been constrained by limitations in the scalability, automation and high-throughput operation of implanted wireless neural devices. Here we report scalable and modular hardware and software infrastructure for setting up and operating remotely programmable miniaturized wireless networks leveraging Bluetooth Low Energy for the study of the long-term behaviour of large groups of rodents. The integrated system allows for automated, scheduled and real-time experimentation via the simultaneous and independent use of multiple neural devices and equipment within and across laboratories. By measuring the locomotion, feeding, arousal and social behaviours of groups of mice or rats, we show that the system allows for bidirectional data transfer from readily available hardware, and that it can be used with programmable pharmacological or optogenetic stimulation. Scalable and modular wireless-network infrastructure should facilitate the remote operation of fully automated large-scale and long-term closed-loop experiments for the study of neural circuits and animal behaviour.


Asunto(s)
Neurociencias , Tecnología Inalámbrica , Animales , Conducta Animal , Ratones , Optogenética , Prótesis e Implantes , Ratas
9.
Elife ; 102021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33779547

RESUMEN

Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs.


Obesity and anorexia nervosa are two health conditions related to food intake. Researchers studying these disorders in animal models need to both measure food intake and assess behavioural factors: that is, why animals seek and consume food. Measuring an animal's food intake is usually done by weighing food containers. However, this can be inaccurate due to the small amount of food that rodents eat. As for studying feeding motivation, this can involve calculating the number of times an animal presses a lever to receive a food pellet. These tests are typically conducted in hour-long sessions in temporary testing cages, called operant boxes. Yet, these tests only measure a brief period of a rodent's life. In addition, it takes rodents time to adjust to these foreign environments, which can introduce stress and may alter their feeding behaviour. To address this, Matikainen-Ankney, Earnest, Ali et al. developed a device for monitoring food intake and feeding behaviours around the clock in rodent home cages with minimal experimenter intervention. This 'Feeding Experimentation Device' (FED3) features a pellet dispenser and two 'nose-poke' sensors to measure total food intake, as well as motivation for and learning about food rewards. The battery-powered, wire-free device fits in standard home cages, enabling long-term studies of feeding behaviour with minimal intervention from investigators and less stress on the animals. This means researchers can relate data to circadian rhythms and meal patterns, as Matikainen-Ankney did here. Moreover, the device software is open-source so researchers can customise it to suit their experimental needs. It can also be programmed to synchronise with other instruments used in animal experiments, or across labs running the same behavioural tasks for multi-site studies. Used in this way, it could help improve reproducibility and reliability of results from such studies. In summary, Matikainen-Ankney et al. have presented a new practical solution for studying food-related behaviours in mice and rats. Not only could the device be useful to researchers, it may also be suitable to use in educational settings such as teaching labs and classrooms.


Asunto(s)
Crianza de Animales Domésticos , Condicionamiento Operante , Diseño de Equipo/instrumentación , Conducta Alimentaria , Vivienda para Animales , Roedores/fisiología , Animales , Ingestión de Alimentos , Femenino , Masculino , Ratones
10.
Brain Neurosci Adv ; 4: 2398212820930321, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954002

RESUMEN

This review aims to synthesise a large pre-clinical and clinical literature related to a hypothesised role of the locus coeruleus norepinephrine system in responses to acute and chronic threat, as well as the emergence of pathological anxiety. The locus coeruleus has widespread norepinephrine projections throughout the central nervous system, which act to globally modulate arousal states and adaptive behavior, crucially positioned to play a significant role in modulating both ascending visceral and descending cortical neurocognitive information. In response to threat or a stressor, the locus coeruleus-norepinephrine system globally modulates arousal, alerting and orienting functions and can have a powerful effect on the regulation of multiple memory systems. Chronic stress leads to amplification of locus coeruleus reactivity to subsequent stressors, which is coupled with the emergence of pathological anxiety-like behaviors in rodents. While direct in vivo evidence for locus coeruleus dysfunction in humans with pathological anxiety remains limited, recent advances in high-resolution 7-T magnetic resonance imaging and computational modeling approaches are starting to provide new insights into locus coeruleus characteristics.

11.
Adv Funct Mater ; 30(46)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33708031

RESUMEN

Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating in vivo optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly. Moreover, the inherent time-consuming nature of current fabrication procedures impede the rapid customization of neural probes in between in vivo studies. Here, we introduce a new technique stemming from 3D printing technology for the low-cost, mass production of rapidly customizable optogenetic neural probes. We detail the 3D printing production process, on-the-fly design versatility, and biocompatibility of 3D printed optogenetic probes as well as their functional capabilities for wireless in vivo optogenetics. Successful in vivo studies with 3D printed devices highlight the reliability of this easily accessible and flexible manufacturing approach that, with advances in printing technology, can foreshadow its widespread applications in low-cost bioelectronics in the future.

12.
Sci Adv ; 5(11): eaay0418, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31701008

RESUMEN

Traditionally, electronics have been designed with static form factors to serve designated purposes. This approach has been an optimal direction for maintaining the overall device performance and reliability for targeted applications. However, electronics capable of changing their shape, flexibility, and stretchability will enable versatile and accommodating systems for more diverse applications. Here, we report design concepts, materials, physics, and manufacturing strategies that enable these reconfigurable electronic systems based on temperature-triggered tuning of mechanical characteristics of device platforms. We applied this technology to create personal electronics with variable stiffness and stretchability, a pressure sensor with tunable bandwidth and sensitivity, and a neural probe that softens upon integration with brain tissue. Together, these types of transformative electronics will substantially broaden the use of electronics for wearable and implantable applications.


Asunto(s)
Técnicas Biosensibles , Electrónica , Dispositivos Electrónicos Vestibles , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/normas , Módulo de Elasticidad , Electrónica/instrumentación , Electrónica/métodos , Humanos , Masculino , Ratones , Especificidad de Órganos , Presión , Sensibilidad y Especificidad , Estrés Mecánico , Temperatura
13.
J Neurosci ; 39(42): 8239-8249, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619493

RESUMEN

The locus coeruleus (LC) is a seemingly singular and compact neuromodulatory nucleus that is a prominent component of disparate theories of brain function due to its broad noradrenergic projections throughout the CNS. As a diffuse neuromodulatory system, noradrenaline affects learning and decision making, control of sleep and wakefulness, sensory salience including pain, and the physiology of correlated forebrain activity (ensembles and networks) and brain hemodynamic responses. However, our understanding of the LC is undergoing a dramatic shift due to the application of state-of-the-art methods that reveal a nucleus of many modules that provide targeted neuromodulation. Here, we review the evidence supporting a modular LC based on multiple levels of observation (developmental, genetic, molecular, anatomical, and neurophysiological). We suggest that the concept of the LC as a singular nucleus and, alongside it, the role of the LC in diverse theories of brain function must be reconsidered.


Asunto(s)
Neuronas Adrenérgicas/fisiología , Función Ejecutiva/fisiología , Locus Coeruleus/fisiología , Neuronas/fisiología , Animales , Humanos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Dolor/fisiopatología , Sueño/fisiología , Vigilia/fisiología
14.
Cell ; 178(3): 653-671.e19, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348890

RESUMEN

Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin. Fiber photometry recordings during progressive ratio operant behavior revealed pnVTAPnoc neurons become most active when mice stop seeking natural rewards. Selective pnVTAPnoc neuron ablation, inhibition, and conditional VTA nociceptin receptor (NOPR) deletion increased operant responding, revealing that the pnVTAPnoc nucleus and VTA NOPR signaling are necessary for regulating reward motivation. Additionally, optogenetic and chemogenetic activation of this pnVTAPnoc nucleus caused avoidance and decreased motivation for rewards. These findings provide insight into neuromodulatory circuits that regulate motivated behaviors through identification of a previously unknown neuropeptide-containing pnVTA nucleus that limits motivation for rewards.


Asunto(s)
Motivación/efectos de los fármacos , Péptidos Opioides/farmacología , Recompensa , Área Tegmental Ventral/metabolismo , Potenciales de Acción , Animales , Conducta Animal/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Técnicas de Placa-Clamp , Precursores de Proteínas/genética , Receptores Opioides/agonistas , Receptores Opioides/deficiencia , Receptores Opioides/genética , Receptor de Nociceptina , Nociceptina
16.
Neuron ; 102(3): 564-573.e6, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30878290

RESUMEN

Negative affective states affect quality of life for patients suffering from pain. These maladaptive emotional states can lead to involuntary opioid overdose and many neuropsychiatric comorbidities. Uncovering the mechanisms responsible for pain-induced negative affect is critical in addressing these comorbid outcomes. The nucleus accumbens (NAc) shell, which integrates the aversive and rewarding valence of stimuli, exhibits plastic adaptations in the presence of pain. In discrete regions of the NAc, activation of the kappa opioid receptor (KOR) decreases the reinforcing properties of rewards and induces aversive behaviors. Using complementary techniques, we report that in vivo recruitment of NAc shell dynorphin neurons, acting through KOR, is necessary and sufficient to drive pain-induced negative affect. Taken together, our results provide evidence that pain-induced adaptations in the kappa opioid system within the NAc shell represent a functional target for therapeutic intervention that could circumvent pain-induced affective disorders. VIDEO ABSTRACT.


Asunto(s)
Afecto/fisiología , Dinorfinas/metabolismo , Inflamación/metabolismo , Trastornos del Humor/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Dolor/metabolismo , Receptores Opioides kappa/metabolismo , Animales , Inflamación/complicaciones , Inflamación/psicología , Ratones , Trastornos del Humor/etiología , Trastornos del Humor/psicología , Inhibición Neural , Plasticidad Neuronal , Núcleo Accumbens/citología , Dolor/complicaciones , Dolor/psicología , Ratas
17.
Elife ; 72018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30175957

RESUMEN

Though the last decade has seen accelerated advances in techniques and technologies to perturb neuronal circuitry in the brain, we are still poorly equipped to adequately dissect endogenous peptide release in vivo. To this end we developed a system that combines in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents.


Asunto(s)
Encéfalo/metabolismo , Péptidos Opioides/aislamiento & purificación , Optogenética , Animales , Espectrometría de Masas , Ratones , Neuronas/metabolismo , Péptidos Opioides/metabolismo
18.
Nat Commun ; 9(1): 2710, 2018 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-30006624

RESUMEN

Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optogenetics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN-LDTg connection blocks nicotine conditioned place aversion, suggesting that the IPN-LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine.


Asunto(s)
Reacción de Prevención/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Habénula/efectos de los fármacos , Núcleo Interpeduncular/efectos de los fármacos , Nicotina/farmacología , Tegmento Mesencefálico/efectos de los fármacos , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Electrodos Implantados , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Expresión Génica , Habénula/citología , Habénula/metabolismo , Núcleo Interpeduncular/citología , Núcleo Interpeduncular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Optogenética , Recompensa , Técnicas Estereotáxicas , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Tegmento Mesencefálico/citología , Tegmento Mesencefálico/metabolismo , Transgenes
19.
Curr Opin Pharmacol ; 36: 78-85, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28892801

RESUMEN

Site-specific drug delivery carries many advantages of systemic administration, but is rarely used in the clinic. One limiting factor is the relative invasiveness of the technology to locally deliver compounds. Recent advances in materials science and electrical engineering allow for the development of ultraminiaturized microfluidic channels based on soft materials to create flexible probes capable of deep tissue targeting. A diverse set of mechanics, including micro-pumps and functional materials, used to deliver the drugs can be paired with wireless electronics for self-contained and programmable operation. These first iterations of minimally invasive fluid delivery devices foreshadow important advances needed for clinical translation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Microfluídica , Animales , Humanos , Bombas de Infusión Implantables , Tecnología Inalámbrica
20.
Elife ; 62017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28708061

RESUMEN

Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that ß-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.


Asunto(s)
Neuronas Adrenérgicas/fisiología , Ansiedad , Complejo Nuclear Basolateral/fisiología , Locus Coeruleus/fisiología , Vías Nerviosas/fisiología , Animales , Conducta Animal , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA