Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 530(10): 1658-1699, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35134251

RESUMEN

Diverse neurons in the parabrachial nucleus (PB) communicate with widespread brain regions. Despite evidence linking them to a variety of homeostatic functions, it remains difficult to determine which PB neurons influence which functions because their subpopulations intermingle extensively. An improved framework for identifying these intermingled subpopulations would help advance our understanding of neural circuit functions linked to this region. Here, we present the foundation of a developmental-genetic ontology that classifies PB neurons based on their intrinsic, molecular features. By combining transcription factor labeling with Cre fate-mapping, we find that the PB is a blend of two, developmentally distinct macropopulations of glutamatergic neurons. Neurons in the first macropopulation express Lmx1b (and, to a lesser extent, Lmx1a) and are mutually exclusive with those in a second macropopulation, which derive from precursors expressing Atoh1. This second, Atoh1-derived macropopulation includes many Foxp2-expressing neurons, but Foxp2 also identifies a subset of Lmx1b-expressing neurons in the Kölliker-Fuse nucleus (KF) and a population of GABAergic neurons ventrolateral to the PB ("caudal KF"). Immediately ventral to the PB, Phox2b-expressing glutamatergic neurons (some coexpressing Lmx1b) occupy the KF, supratrigeminal nucleus, and reticular formation. We show that this molecular framework organizes subsidiary patterns of adult gene expression (including Satb2, Calca, Grp, and Pdyn) and predicts output projections to the amygdala (Lmx1b), hypothalamus (Atoh1), and hindbrain (Phox2b/Lmx1b). Using this molecular ontology to organize, interpret, and communicate PB-related information could accelerate the translation of experimental findings from animal models to human patients.


Asunto(s)
Núcleo de Kölliker-Fuse , Núcleos Parabraquiales , Animales , Encéfalo/metabolismo , Neuronas GABAérgicas/metabolismo , Humanos , Hipotálamo/metabolismo , Puente/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Neuroimage ; 45(2): 360-9, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19154791

RESUMEN

Fluorescent molecular tomographic (FMT) imaging can noninvasively monitor molecular function in living animals using specific fluorescent probes. However, macroscopic imaging methods such as FMT generally exhibit low anatomical details. To overcome this, we report a quantitative technique to image both structure and function by combining FMT and magnetic resonance (MR) imaging. We show that FMT-MR imaging can produce three-dimensional, multimodal images of living mouse brains allowing for serial monitoring of tumor morphology and protease activity. Combined FMT-MR tumor imaging provides a unique in vivo diagnostic parameter, protease activity concentration (PAC), which reflects histological changes in tumors and is significantly altered by systemic chemotherapy. Alterations in this diagnostic parameter are detectable early after chemotherapy and correlate with subsequent tumor growth, predicting tumor response to chemotherapy. Our results reveal that combined FMT-MR imaging of fluorescent molecular probes could be valuable for brain tumor drug development and other neurological and somatic imaging applications.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Dacarbazina/análogos & derivados , Glioma/tratamiento farmacológico , Glioma/patología , Imagen por Resonancia Magnética/métodos , Microscopía Fluorescente/métodos , Técnica de Sustracción , Animales , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Dacarbazina/uso terapéutico , Humanos , Masculino , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Temozolomida , Resultado del Tratamiento
3.
Nat Neurosci ; 11(7): 807-15, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18568021

RESUMEN

Synaptic plasticity underlies the adaptability of the mammalian brain, but has been difficult to study in living animals. Here we imaged the synapses between pre- and postganglionic neurons in the mouse submandibular ganglion in vivo, focusing on the mechanisms that maintain and regulate neurotransmitter receptor density at postsynaptic sites. Normally, synaptic receptor densities were maintained by rapid exchange of receptors with nonsynaptic regions (over minutes) and by continual turnover of cell surface receptors (over hours). However, after ganglion cell axons were crushed, synaptic receptors showed greater lateral mobility and there was a precipitous decline in insertion. These changes led to near-complete loss of synaptic receptors and synaptic depression. Disappearance of postsynaptic spines and presynaptic terminals followed this acute synaptic depression. Therefore, neurotransmitter receptor dynamism associated with rapid changes in synaptic efficacy precedes long-lasting structural changes in synaptic connectivity.


Asunto(s)
Neuronas/citología , Dinámicas no Lineales , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Análisis de Varianza , Animales , Axotomía/métodos , Bungarotoxinas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Regulación de la Expresión Génica/fisiología , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Terminales Presinápticos/fisiología , Terminales Presinápticos/efectos de la radiación , Receptores Colinérgicos/clasificación , Receptores Colinérgicos/ultraestructura , Glándula Submandibular/citología , Factores de Tiempo
4.
Dev Neurobiol ; 68(6): 760-70, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18383540

RESUMEN

Much of what is currently known about the behavior of synapses in vivo has been learned at the mammalian neuromuscular junction, because it is large and accessible and also its postsynaptic acetylcholine receptors (AChRs) are readily labeled with a specific, high-affinity probe, alpha-bungarotoxin (BTX). Neuron-neuron synapses have thus far been much less accessible. We therefore developed techniques for imaging interneuronal synapses in an accessible ganglion in the peripheral nervous system. In the submandibular ganglion, individual preganglionic axons establish large numbers of axo-somatic synapses with postganglionic neurons. To visualize these sites of synaptic contact, presynaptic axons were imaged by using transgenic mice that express fluorescent protein in preganglionic neurons. The postsynaptic sites were visualized by labeling the acetylcholine receptor (AChR) alpha7 subunit with fluorescently tagged BTX. We developed in vivo methods to acquire three-dimensional image stacks of the axons and postsynaptic sites and then follow them over time. The submandibular ganglion is an ideal site to study the formation, elimination, and maintenance of synaptic connections between neurons in vivo.


Asunto(s)
Ganglios Parasimpáticos/citología , Interneuronas/citología , Unión Neuromuscular/anatomía & histología , Terminales Presinápticos , Animales , Bungarotoxinas/farmacocinética , Imagenología Tridimensional , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Transgénicos , Microscopía Confocal , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Antígenos Thy-1/genética , Factores de Tiempo
5.
J Neurosci ; 27(22): 6064-7, 2007 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17537978

RESUMEN

To examine the role of retrograde signals on synaptic maintenance, we inhibited protein synthesis in individual postsynaptic cells in vivo while monitoring presynaptic terminals. Within 12 h, axon terminals begin to atrophy and withdraw from normal postsynaptic sites. Structural similarities between this process and naturally occurring synapse elimination suggest that short-lived target derived factors not only participate in synaptic maintenance in adults, but also regulate elimination of connections during development.


Asunto(s)
Inhibidores de la Síntesis de la Proteína , Sinapsis/metabolismo , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Ratones , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Inhibidores de la Síntesis de la Proteína/farmacología , Receptores Colinérgicos/biosíntesis , Sinapsis/efectos de los fármacos , Sinapsis/patología , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo , Membranas Sinápticas/patología , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 103(13): 5149-54, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16549768

RESUMEN

The polypeptide snake toxin alpha-bungarotoxin (BTX) has been used in hundreds of studies on the structure, function, and development of the neuromuscular junction because it binds tightly and specifically to the nicotinic acetylcholine receptors (nAChRs) at this synapse. We show here that BTX also binds to and blocks a subset of GABA(A) receptors (GABA(A)Rs) that contain the GABA(A)R beta3 subunit. These results introduce a previously unrecognized tool for analysis of GABA(A)Rs but may complicate interpretation of some studies on neuronal nAChRs.


Asunto(s)
Bungarotoxinas/metabolismo , Bungarotoxinas/farmacología , Antagonistas Colinérgicos/metabolismo , Antagonistas Colinérgicos/farmacología , Antagonistas del GABA/metabolismo , Antagonistas del GABA/farmacología , Receptores de GABA/metabolismo , Animales , Sitios de Unión , Línea Celular , Cloruros/antagonistas & inhibidores , Cloruros/farmacología , Cricetinae , Conductividad Eléctrica , Espacio Extracelular/metabolismo , Humanos , Oocitos/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA/genética , Xenopus laevis/genética
7.
Biotechniques ; 38(6): 945-52, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16018556

RESUMEN

We describe a method to label specific membrane proteins with fluorophores for live imaging. Fusion proteins are generated that incorporate into their extracellular domains short peptide sequences (13-38 amino acids) recognized with high affinity and specificity by protein ligands, alpha-bungarotoxin (BTX), or streptavidin (SA). Many fluorophore- and enzyme-conjugated derivatives of both ligands are commercially available. To demonstrate the general utility of the methods, we tagged a vesicle-associated protein (VAMP2), a receptor tyrosine kinase [muscle-specific kinase (MuSK)], and receptors for three neurotransmitters: acetylcholine (nAChR alpha3), glutamate (mGluR2), and gamma-aminobutyric acid (GABA(A) alpha3). In all cases, we could selectively label surface-exposed proteins without interference from intracellular pools. By successive pulse-labeling with different fluorophore conjugates of a single ligand, we were able to monitor endocytosis of tagged molecules. By combining the two ligands, we could assess co-localization of synaptic components in cells. This strategy for epitope tagging provides a useful adjunct to green fluorescent protein (GFP)-tagging, which fails to distinguish intracellular from extracellular pools, sometimes interferes with protein localization or function, and requires a separate construct for each color.


Asunto(s)
Colorantes Fluorescentes/química , Proteínas de la Membrana/química , Péptidos/química , Secuencia de Bases , Línea Celular , Cartilla de ADN , Epítopos/química , Humanos , Proteínas de la Membrana/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...