Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
2.
Genes (Basel) ; 13(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35885948

RESUMEN

Septo-optic dysplasia (SOD) is a developmental phenotype characterized by midline neuroradiological anomalies, optic nerve hypoplasia, and pituitary anomalies, with a high degree of variability and additional systemic anomalies present in some cases. While disruption of several transcription factors has been identified in SOD cohorts, most cases lack a genetic diagnosis, with multifactorial risk factors being thought to play a role. Exome sequencing in a cohort of families with a clinical diagnosis of SOD identified a genetic diagnosis in 3/6 families, de novo variants in SOX2, SHH, and ARID1A, and explored variants of uncertain significance in the remaining three. The outcome of this study suggests that investigation for a genetic etiology is warranted in individuals with SOD, particularly in the presence of additional syndromic anomalies and when born to older, multigravida mothers. The identification of causative variants in SHH and ARID1A further expands the phenotypic spectra associated with these genes and reveals novel pathways to explore in septo-optic dysplasia.


Asunto(s)
Displasia Septo-Óptica , Humanos , Fenotipo , Displasia Septo-Óptica/diagnóstico , Displasia Septo-Óptica/genética , Superóxido Dismutasa/genética
3.
NPJ Genom Med ; 5(1): 53, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298948

RESUMEN

USP9X is an X-chromosome gene that escapes X-inactivation. Loss or compromised function of USP9X leads to neurodevelopmental disorders in males and females. While males are impacted primarily by hemizygous partial loss-of-function missense variants, in females de novo heterozygous complete loss-of-function mutations predominate, and give rise to the clinically recognisable USP9X-female syndrome. Here we provide evidence of the contribution of USP9X missense and small in-frame deletion variants in USP9X-female syndrome also. We scrutinise the pathogenicity of eleven such variants, ten of which were novel. Combined application of variant prediction algorithms, protein structure modelling, and assessment under clinically relevant guidelines universally support their pathogenicity. The core phenotype of this cohort overlapped with previous descriptions of USP9X-female syndrome, but exposed heightened variability. Aggregate phenotypic information of 35 currently known females with predicted pathogenic variation in USP9X reaffirms the clinically recognisable USP9X-female syndrome, and highlights major differences when compared to USP9X-male associated neurodevelopmental disorders.

4.
Clin Genet ; 98(5): 486-492, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32729136

RESUMEN

Ocular coloboma is caused by failure of optic fissure closure during development and recognized as part of the microphthalmia, anophthalmia, and coloboma (MAC) spectrum. While many genes are known to cause colobomatous microphthalmia, relatively few have been reported in coloboma with normal eye size. Genetic analysis including trio exome sequencing and Sanger sequencing was undertaken in a family with two siblings affected with bilateral coloboma of the iris, retina, and choroid. Pathogenic variants in MAC genes were excluded. Trio analysis identified compound heterozygous donor splice site variants in CDON, a cell-surface receptor known to function in the Sonic Hedgehog pathway, c.928 + 1G > A and c.2650 + 1G > T, in both affected individuals. Heterozygous missense and truncating CDON variants are associated with dominant holoprosencephaly (HPE) with incomplete penetrance and Cdon-/- mice display variable HPE and coloboma. A homozygous nonsense allele of uncertain significance was recently identified in a consanguineous patient with coloboma and a second molecular diagnosis. We report the first compound heterozygous variants in CDON as a cause of isolated coloboma. CDON is the first HPE gene identified to cause recessive coloboma. Given the phenotypic overlap, further examination of HPE genes in coloboma is indicated.


Asunto(s)
Moléculas de Adhesión Celular/genética , Coloboma/genética , Holoprosencefalia/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Animales , Coloboma/diagnóstico , Coloboma/diagnóstico por imagen , Coloboma/patología , Ojo/metabolismo , Ojo/patología , Femenino , Heterocigoto , Holoprosencefalia/diagnóstico , Holoprosencefalia/diagnóstico por imagen , Holoprosencefalia/patología , Humanos , Masculino , Ratones , Mutación/genética , Empalme de Proteína/genética , Empalme del ARN/genética , Secuenciación del Exoma , Adulto Joven
5.
Eur J Med Genet ; 63(4): 103817, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31778854

RESUMEN

BACKGROUND: DGAT1, a gene encoding a protein involved in lipid metabolism, has been recently implicated in causing a rare nutritional and digestive disease presenting as Congenital Diarrheal Disorder (CDD). Genetic causes of malnutrition can be classified as metabolic disorders, caused by loss of a specific enzyme's function. However, disease driven by genetic variants in lipid metabolism genes is not well understood, and additional information is needed to better understand these effects. METHODS: We gathered a multi-institutional cohort of undiagnosed patients with a constellation of phenotypes presenting as malnutrition and metal ion dysregulation. Clinical Whole Exome Sequencing (WES) was performed on four patients and their unaffected parents. We prioritized genetic variants based on multiple criteria including population allele frequency and presumed inheritance pattern, and identified a candidate gene. Computational modeling was used to investigate if the altered amino acids are likely to result in a dysfunctional enzyme. RESULTS: We identified a multi-institutional cohort of patients presenting with malnutrition-like symptoms and likely pathogenic genomic variants within DGAT1. Multiple approaches were used to profile the effect these variants have on protein structure and function. Laboratory and nutritional intervention studies showed rapid and robust patient responses. CONCLUSIONS: This report adds on to the database for existing mutations known within DGAT1, a gene recently implicated with CDD, and also expands its clinical spectrum. Identification of these DGAT1 mutations by WES has allowed for changes in the patients' nutritional rehabilitation, reversed growth failure and enabled them to be weaned off of total parenteral nutrition (TPN).


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Diarrea/genética , Desnutrición/genética , Diarrea/dietoterapia , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Desnutrición/dietoterapia , Mutación , Secuenciación del Exoma
6.
Hum Genet ; 138(11-12): 1259-1266, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31555905

RESUMEN

Alkylglycerol monooxygenase (AGMO) is the only enzyme known to cleave the O-alkyl bonds of ether lipids (alkylglycerols) which are essential components of cell membranes. A homozygous frameshift variant [p.(Glu324LysfsTer12)] in AGMO has recently been reported in two male siblings with syndromic microcephaly. In this study, we identified rare nonsense, in frame deletion, and missense biallelic variants in AGMO in two unrelated individuals with neurodevelopmental disabilities. We assessed the activity of seven disease associated AGMO variants including the four variants identified in our two affected individuals expressed in human embryonic kidney (HEK293T) cells. We demonstrated significantly diminished enzyme activity for all disease-associated variants, supporting the mechanism as decreased AGMO activity. Future mechanistic studies are necessary to understand how decreased AGMO activity leads to the neurologic manifestations.


Asunto(s)
Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutación , Trastornos del Neurodesarrollo/patología , Alelos , Células HEK293 , Humanos , Masculino , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Pronóstico
7.
J Neuropathol Exp Neurol ; 78(3): 283-287, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715496

RESUMEN

The phenotypes associated with pathogenic variants in the ryanodine receptor 1 gene (RYR1, OMIM# 180901) have greatly expanded over the last few decades as genetic testing for RYR1 variants has become more common. Initially described in association with malignant hyperthermia, pathogenic variants in RYR1 are typically associated with core pathology in muscle biopsies (central core disease or multiminicore disease) and symptomatic myopathies with symptoms ranging from mild weakness to perinatal lethality. We describe a 2-week-old male patient with multiple congenital dysmorphisms, severe perinatal weakness, and subsequent demise, whose histopathology on autopsy was consistent with congenital muscular dystrophy. Immunohistochemical analysis of dystrophy-associated proteins was normal. Rapid exome sequencing revealed a novel heterozygous nonsense variant (p.Trp661Ter) in RYR1, as well as a previously described RYR1 pathogenic variant associated with congenital myopathy (p.Phe4976Leu). This highlights the potential for RYR1 pathogenic variants to produce pathological findings most consistent with congenital muscular dystrophy.


Asunto(s)
Enfermedades Musculares/genética , Enfermedades Musculares/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Índice de Severidad de la Enfermedad , Resultado Fatal , Humanos , Recién Nacido , Masculino
8.
Am J Hum Genet ; 103(6): 1038-1044, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30503519

RESUMEN

During genome replication, polymerase epsilon (Pol ε) acts as the major leading-strand DNA polymerase. Here we report the identification of biallelic mutations in POLE, encoding the Pol ε catalytic subunit POLE1, in 15 individuals from 12 families. Phenotypically, these individuals had clinical features closely resembling IMAGe syndrome (intrauterine growth restriction [IUGR], metaphyseal dysplasia, adrenal hypoplasia congenita, and genitourinary anomalies in males), a disorder previously associated with gain-of-function mutations in CDKN1C. POLE1-deficient individuals also exhibited distinctive facial features and variable immune dysfunction with evidence of lymphocyte deficiency. All subjects shared the same intronic variant (c.1686+32C>G) as part of a common haplotype, in combination with different loss-of-function variants in trans. The intronic variant alters splicing, and together the biallelic mutations lead to cellular deficiency of Pol ε and delayed S-phase progression. In summary, we establish POLE as a second gene in which mutations cause IMAGe syndrome. These findings add to a growing list of disorders due to mutations in DNA replication genes that manifest growth restriction alongside adrenal dysfunction and/or immunodeficiency, consolidating these as replisome phenotypes and highlighting a need for future studies to understand the tissue-specific development roles of the encoded proteins.


Asunto(s)
Insuficiencia Suprarrenal/genética , ADN Polimerasa II/genética , Retardo del Crecimiento Fetal/genética , Mutación/genética , Osteocondrodisplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Anomalías Urogenitales/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Replicación del ADN/genética , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
9.
Hum Mutat ; 39(2): 281-291, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29193635

RESUMEN

We report five individuals with loss-of-function of the X-linked AMMECR1: a girl with a balanced X-autosome translocation and inactivation of the normal X-chromosome; two boys with maternally inherited and de novo nonsense variants; and two half-brothers with maternally inherited microdeletion variants. They present with short stature, cardiac and skeletal abnormalities, and hearing loss. Variants of unknown significance in AMMECR1 in four male patients from two families with partially overlapping phenotypes were previously reported. AMMECR1 is coexpressed with genes implicated in cell cycle regulation, five of which were previously associated with growth and bone alterations. Our knockdown of the zebrafish orthologous gene resulted in phenotypes reminiscent of patients' features. The increased transcript and encoded protein levels of AMMECR1L, an AMMECR1 paralog, in the t(X;9) patient's cells indicate a possible partial compensatory mechanism. AMMECR1 and AMMECR1L proteins dimerize and localize to the nucleus as suggested by their nucleic acid-binding RAGNYA folds. Our results suggest that AMMECR1 is potentially involved in cell cycle control and linked to a new syndrome with growth, bone, heart, and kidney alterations with or without elliptocytosis.


Asunto(s)
Huesos/fisiología , Corazón/fisiología , Proteínas/genética , Animales , Western Blotting , Huesos/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular , Exoma/genética , Femenino , Células HeLa , Humanos , Masculino , Secuenciación Completa del Genoma , Pez Cebra
10.
Pediatr Clin North Am ; 64(1): 265-272, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27894449

RESUMEN

Genomic sequencing is the diagnostic test of choice for families with undiagnosed or rare diseases seeking an explanation for their child's complex medical concerns. The desire to find answers can easily bias interpretation of sequencing results, and thus the counseling process is designed to facilitate informed decision making and set realistic expectations for possible outcomes. The patient case examples serve to highlight the various challenges and complexities encountered with the clinical application of genomic sequencing and to reflect some of the data that has been accrued during the past 5 years of clinical experience.


Asunto(s)
Pruebas Genéticas/métodos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Niño , Toma de Decisiones , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA