RESUMEN
Extracellular vesicles (EVs) have emerged as important mediators of inter-tissue signaling and exercise adaptations. In this human study (n = 32), we provide evidence that muscle-specific microRNA-1 (miR-1) was transferred to adipose tissue via EVs following an acute bout of resistance exercise. Using a multi-model machine learning automation tool, we discovered muscle primary miR-1 transcript and CD63+ EV count in circulation as top explanatory features for changes in adipose miR-1 levels in response to resistance exercise. RNA-sequencing (RNA-seq) and in-silico prediction of miR-1 target genes identified caveolin 2 (CAV2) and tripartite motif containing 6 (TRIM6) as miR-1 target genes downregulated in the adipose tissue of a subset of participants with the highest increases in miR-1 levels following resistance exercise (n = 6). Overexpression of miR-1 in differentiated human adipocyte-derived stem cells downregulated these miR-1 targets and enhanced catecholamine-induced lipolysis. These data identify a potential EV-mediated mechanism by which skeletal muscle communicates to adipose tissue and modulates lipolysis via miR-1.
RESUMEN
MicroRNA-1 (miR-1) is the most abundant miRNA in adult skeletal muscle. To determine the function of miR-1 in adult skeletal muscle, we generated an inducible, skeletal muscle-specific miR-1 knockout (KO) mouse. Integration of RNA-sequencing (RNA-seq) data from miR-1 KO muscle with Argonaute 2 enhanced crosslinking and immunoprecipitation sequencing (AGO2 eCLIP-seq) from human skeletal muscle identified miR-1 target genes involved with glycolysis and pyruvate metabolism. The loss of miR-1 in skeletal muscle induced cancer-like metabolic reprogramming, as shown by higher pyruvate kinase muscle isozyme M2 (PKM2) protein levels, which promoted glycolysis. Comprehensive bioenergetic and metabolic phenotyping combined with skeletal muscle proteomics and metabolomics further demonstrated that miR-1 KO induced metabolic inflexibility as a result of pyruvate oxidation resistance. While the genetic loss of miR-1 reduced endurance exercise performance in mice and in C. elegans, the physiological down-regulation of miR-1 expression in response to a hypertrophic stimulus in both humans and mice causes a similar metabolic reprogramming that supports muscle cell growth. Taken together, these data identify a novel post-translational mechanism of adult skeletal muscle metabolism regulation mediated by miR-1.
RESUMEN
Skeletal muscle stem cells (MuSCs) display distinct behavior crucial for tissue maintenance and repair. Upon activation, MuSCs exhibit distinct modes of division: symmetric division, facilitating either self-renewal or differentiation, and asymmetric division, which dictates divergent cellular fates. This review explores the nuanced dynamics of MuSC division and the molecular mechanisms governing this behavior. Furthermore, it introduces a novel phenomenon observed in a subset of MuSCs under hypertrophic stimuli termed division-independent differentiation. Insights into the underlying mechanisms driving this process are discussed, alongside its broader implications for muscle physiology.
Asunto(s)
Diferenciación Celular , Hipertrofia , Músculo Esquelético , Células Satélite del Músculo Esquelético , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Humanos , Animales , División CelularRESUMEN
Skeletal muscle exhibits remarkable plasticity to adapt to stimuli such as mechanical loading. The mechanisms that regulate skeletal muscle hypertrophy due to mechanical overload have been thoroughly studied. Remarkably, our understanding of many of the molecular and cellular mechanisms that regulate hypertrophic growth were first identified using the rodent synergist ablation (SA) model and subsequently corroborated in human resistance exercise training studies. To demonstrate the utility of the SA model, we briefly summarize the hypertrophic mechanisms identified using the model and the following translation of these mechanism to human skeletal muscle hypertrophy induced by resistance exercise training.
Asunto(s)
Hipertrofia , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Humanos , Entrenamiento de FuerzaRESUMEN
Roberts et al. have provided an insightful counterpoint to our review article on the utility of the synergist ablation model. The purpose of this review is to provide some further dialogue regarding the strengths and weaknesses of the synergist ablation model. Specifically, we highlight that the robustness of the model overshadows surgical limitations. We also compare the transcriptomic responses to synergist ablation in mice and resistance exercise in humans to identify common pathways. We conclude that "cell growth is cell growth" and that the mechanisms available to cells to accumulate biomass and increase in size are similar across cell types and independent of the rate of growth.
Asunto(s)
Proliferación Celular , Hipertrofia , Músculo Esquelético , Animales , Humanos , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proliferación Celular/fisiología , RatonesRESUMEN
Regular exercise yields a multitude of systemic benefits, many of which may be mediated through the gut microbiome. Here, we report that cecal microbial transplants (CMTs) from exercise-trained vs. sedentary mice have modest benefits in reducing skeletal muscle atrophy using a mouse model of unilaterally hindlimb-immobilization. Direct administration of top microbial-derived exerkines from an exercise-trained gut microbiome preserved muscle function and prevented skeletal muscle atrophy.
RESUMEN
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Asunto(s)
Músculo Esquelético , Proteína p53 Supresora de Tumor , Animales , Ratones , Senescencia Celular , Hipertrofia , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacologíaRESUMEN
Adult muscle stem cells (MuSCs) are known to replicate upon activation before differentiating and fusing to regenerate myofibers. It is unclear whether MuSC differentiation is intrinsically linked to cell division, which has implications for stem cell population maintenance. We use single-cell RNA-sequencing to identify transcriptionally diverse subpopulations of MuSCs after 5 days of a growth stimulus in adult muscle. Trajectory inference in combination with a novel mouse model for tracking MuSC-derived myonuclei and in vivo labeling of DNA replication revealed an MuSC population that exhibited division-independent differentiation and fusion. These findings demonstrate that in response to a growth stimulus in the presence of intact myofibers, MuSC division is not obligatory.
Asunto(s)
Células Madre Adultas , Músculo Esquelético , Animales , Ratones , Diferenciación Celular , División CelularRESUMEN
Introduction: Apolipoprotein E (ApoE) has been shown to be necessary for proper skeletal muscle regeneration. Consistent with this finding, single-cell RNA-sequencing analyses of skeletal muscle stem cells (MuSCs) revealed that Apoe is a top marker of quiescent MuSCs that is downregulated upon activation. The purpose of this study was to determine if muscle regeneration is altered in mice which harbor one of the three common human ApoE isoforms, referred to as ApoE2, E3 and E4. Methods: Histomorphometric analyses were employed to assess muscle regeneration in ApoE2, E3, and E4 mice after 14 days of recovery from barium chloride-induced muscle damage in vivo, and primary MuSCs were isolated to assess proliferation and differentiation of ApoE2, E3, and E4 MuSCs in vitro. Results: There was no difference in the basal skeletal muscle phenotype of ApoE isoforms as evaluated by section area, myofiber cross-sectional area (CSA), and myonuclear and MuSC abundance per fiber. Although there were no differences in fiber-type frequency in the soleus, Type IIa relative frequency was significantly lower in plantaris muscles of ApoE4 mice compared to ApoE3. Moreover, ApoE isoform did not influence muscle regeneration as assessed by fiber frequency, fiber CSA, and myonuclear and MuSC abundance. Finally, there were no differences in the proliferative capacity or myogenic differentiation potential of MuSCs between any ApoE isoform. Discussion: Collectively, these data indicate nominal effects of ApoE isoform on the ability of skeletal muscle to regenerate following injury or the in vitro MuSC phenotype.
RESUMEN
Recently, the gut microbiome has emerged as a potent modulator of exercise-induced systemic adaptation and appears to be crucial for mediating some of the benefits of exercise. This study builds upon previous evidence establishing a gut microbiome-skeletal muscle axis, identifying exercise-induced changes in microbiome composition. Metagenomics sequencing of fecal samples from non-exercise-trained controls or exercise-trained mice was conducted. Biodiversity indices indicated exercise training did not change alpha diversity. However, there were notable differences in beta-diversity between trained and untrained microbiomes. Exercise significantly increased the level of the bacterial species Muribaculaceae bacterium DSM 103720. Computation simulation of bacterial growth was used to predict metabolites that accumulate under in silico culture of exercise-responsive bacteria. We identified acetate and succinate as potential gut microbial metabolites that are produced by Muribaculaceae bacterium, which were then administered to mice during a period of mechanical overload-induced muscle hypertrophy. Although no differences were observed for the overall muscle growth response to succinate or acetate administration during the first 5 days of mechanical overload-induced hypertrophy, acetate and succinate increased skeletal muscle mitochondrial respiration. When given as post-biotics, succinate or acetate treatment may improve oxidative metabolism during muscle hypertrophy.
Asunto(s)
Microbiota , Ácido Succínico , Ratones , Animales , Músculo Esquelético/metabolismo , Bacterias , Bacteroidetes , Acetatos/farmacología , Hipertrofia/metabolismoRESUMEN
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Asunto(s)
Músculo Esquelético , Transducción de Señal , Humanos , Animales , Perros , Músculo Esquelético/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , Hipertrofia/metabolismo , Mamíferos/metabolismoRESUMEN
BACKGROUND: Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs. METHODS: High-throughput transcriptomics (HTT) has been recently demonstrated to have high sensitivity and specificity as a rapid and cost-effective assay for detecting tissue toxicity. To better understand the molecular signature of early kidney damage, we performed RNA sequencing (RNA-seq) on renal tissue using a rat model of soft tissue-embedded metal exposure. We then performed small RNA-seq analysis on serum samples from the same animals to identify potential miRNA biomarkers of kidney damage. RESULTS: We found that metals, especially lead and depleted uranium, induce oxidative damage that mainly cause dysregulated mitochondrial gene expression. Utilizing publicly available single-cell RNA-seq datasets, we demonstrate that deep learning-based cell type decomposition effectively identified cells within the kidney that were affected by metal exposure. By combining random forest feature selection and statistical methods, we further identify miRNA-423 as a promising early systemic marker of kidney injury. CONCLUSION: Our data suggest that combining HTT and deep learning is a promising approach for identifying cell injury in kidney tissue. We propose miRNA-423 as a potential serum biomarker for early detection of kidney injury.
Asunto(s)
MicroARNs , Transcriptoma , Ratas , Animales , Transcriptoma/genética , Riñón , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismoAsunto(s)
Buprenorfina , Trastornos Relacionados con Opioides , Embarazo , Femenino , Humanos , Metadona/uso terapéutico , Buprenorfina/uso terapéutico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/rehabilitación , Analgésicos Opioides/uso terapéuticoRESUMEN
Most cells in the body are mononuclear whereas skeletal muscle fibres are uniquely multinuclear. The nuclei of muscle fibres (myonuclei) are usually situated peripherally which complicates the equitable distribution of gene products. Myonuclear abundance can also change under conditions such as hypertrophy and atrophy. Specialised zones in muscle fibres have different functions and thus distinct synthetic demands from myonuclei. The complex structure and regulatory requirements of multinuclear muscle cells understandably led to the hypothesis that myonuclei govern defined 'domains' to maintain homeostasis and facilitate adaptation. The purpose of this review is to provide historical context for the myonuclear domain and evaluate its veracity with respect to mRNA and protein distribution resulting from myonuclear transcription. We synthesise insights from past and current in vitro and in vivo genetically modified models for studying the myonuclear domain under dynamic conditions. We also cover the most contemporary knowledge on mRNA and protein transport in muscle cells. Insights from emerging technologies such as single myonuclear RNA-sequencing further inform our discussion of the myonuclear domain. We broadly conclude: (1) the myonuclear domain can be flexible during muscle fibre growth and atrophy, (2) the mechanisms and role of myonuclear loss and motility deserve further consideration, (3) mRNA in muscle is actively transported via microtubules and locally restricted, but proteins may travel far from a myonucleus of origin and (4) myonuclear transcriptional specialisation extends beyond the classic neuromuscular and myotendinous populations. A deeper understanding of the myonuclear domain in muscle may promote effective therapies for ageing and disease.
Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular/metabolismo , ARN Mensajero/metabolismo , Atrofia/metabolismo , Atrofia/patologíaRESUMEN
The skeletal muscle research field generally accepts that nuclei in skeletal muscle fibers (ie, myonuclei) are post-mitotic and unable to proliferate. Because our deuterium oxide (D2O) labeling studies showed DNA synthesis in skeletal muscle tissue, we hypothesized that resident myonuclei can replicate in vivo. To test this hypothesis, we used a mouse model that temporally labeled myonuclei with GFP followed by D2O labeling during normal cage activity, functional overload, and with satellite cell ablation. During normal cage activity, we observed deuterium enrichment into myonuclear DNA in 7 out of 7 plantaris (PLA), 6 out of 6 tibialis anterior (TA), 5 out of 7 gastrocnemius (GAST), and 7 out of 7 quadriceps (QUAD). The average fractional synthesis rates (FSR) of DNA in myonuclei were: 0.0202 ± 0.0093 in PLA, 0.0239 ± 0.0040 in TA, 0.0076 ± 0. 0058 in GAST, and 0.0138 ± 0.0039 in QUAD, while there was no replication in myonuclei from EDL. These FSR values were largely reproduced in the overload and satellite cell ablation conditions, although there were higher synthesis rates in the overloaded PLA muscle. We further provided evidence that myonuclear replication is through endoreplication, which results in polyploidy. These novel findings contradict the dogma that skeletal muscle nuclei are post-mitotic and open potential avenues to harness the intrinsic replicative ability of myonuclei for muscle maintenance and growth.
Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Ratones , Animales , Fibras Musculares Esqueléticas/fisiología , Núcleo Celular/genética , Músculo Cuádriceps , PoliésteresRESUMEN
Exercise promotes functional improvements in aged tissues, but the extent to which it simulates partial molecular reprogramming is unknown. Using transcriptome profiling from (1) a skeletal muscle-specific in vivo Oct3/4, Klf4, Sox2 and Myc (OKSM) reprogramming-factor expression murine model; (2) an in vivo inducible muscle-specific Myc induction murine model; (3) a translatable high-volume hypertrophic exercise training approach in aged mice; and (4) human exercise muscle biopsies, we collectively defined exercise-induced genes that are common to partial reprogramming. Late-life exercise training lowered murine DNA methylation age according to several contemporary muscle-specific clocks. A comparison of the murine soleus transcriptome after late-life exercise training to the soleus transcriptome after OKSM induction revealed an overlapping signature that included higher JunB and Sun1. Also, within this signature, downregulation of specific mitochondrial and muscle-enriched genes was conserved in skeletal muscle of long-term exercise-trained humans; among these was muscle-specific Abra/Stars. Myc is the OKSM factor most induced by exercise in muscle and was elevated following exercise training in aged mice. A pulse of MYC rewired the global soleus muscle methylome, and the transcriptome after a MYC pulse partially recapitulated OKSM induction. A common signature also emerged in the murine MYC-controlled and exercise adaptation transcriptomes, including lower muscle-specific Melusin and reactive oxygen species-associated Romo1. With Myc, OKSM and exercise training in mice, as well habitual exercise in humans, the complex I accessory subunit Ndufb11 was lower; low Ndufb11 is linked to longevity in rodents. Collectively, exercise shares similarities with genetic in vivo partial reprogramming. KEY POINTS: Advances in the last decade related to cellular epigenetic reprogramming (e.g. DNA methylome remodelling) toward a pluripotent state via the Yamanaka transcription factors Oct3/4, Klf4, Sox2 and Myc (OKSM) provide a window into potential mechanisms for combatting the deleterious effects of cellular ageing. Using global gene expression analysis, we compared the effects of in vivo OKSM-mediated partial reprogramming in skeletal muscle fibres of mice to the effects of late-life murine exercise training in muscle. Myc is the Yamanaka factor most induced by exercise in skeletal muscle, and so we compared the MYC-controlled transcriptome in muscle to Yamanaka factor-mediated and exercise adaptation mRNA landscapes in mice and humans. A single pulse of MYC is sufficient to remodel the muscle methylome. We identify partial reprogramming-associated genes that are innately altered by exercise training and conserved in humans, and propose that MYC contributes to some of these responses.
Asunto(s)
Envejecimiento , Reprogramación Celular , Ejercicio Físico , Músculo Esquelético , Animales , Humanos , Ratones , Reprogramación Celular/genética , Modelos Animales de Enfermedad , Metilación de ADN , Ejercicio Físico/fisiología , Perfilación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Envejecimiento/genética , Envejecimiento/fisiologíaRESUMEN
Since the first use of methadone to treat OUD in pregnancy in the 1970s, there has been a long, controversial, and confusing history of studies, regulatory actions, and practice changes that have clouded an accurate perception of methadone's use in pregnancy. This review will trace this history with a focus on the effect of methadone exposure during pregnancy on neonatal abstinence syndrome (NAS). A new laboratory measure, the serum methadone/metabolite ratio (MMR), has provided a tool for documenting the profoundly dynamic nature of perinatal metabolism. Continuous induction of metabolic enzymes during pregnancy requires dose adjustments and dose frequency changes. The concept of "fetal methadone dosing" emphasizes that relative stability of methadone levels in the fetus is an important consideration for methadone dosing in pregnancy. Finally, the effects of the societal "war on drugs" on pediatric management of neonatal withdrawal risks will be discussed, as well as the importance of comprehensive services for mother and child including the "rooming-in" approach of neonatal care which has considerably replaced the older NICU care model of maternal/infant separation.
RESUMEN
Myc is a powerful transcription factor implicated in epigenetic reprogramming, cellular plasticity, and rapid growth as well as tumorigenesis. Cancer in skeletal muscle is extremely rare despite marked and sustained Myc induction during loading-induced hypertrophy. Here, we investigated global, actively transcribed, stable, and myonucleus-specific transcriptomes following an acute hypertrophic stimulus in mouse plantaris. With these datasets, we define global and Myc-specific dynamics at the onset of mechanical overload-induced muscle fiber growth. Data collation across analyses reveals an under-appreciated role for the muscle fiber in extracellular matrix remodeling during adaptation, along with the contribution of mRNA stability to epigenetic-related transcript levels in muscle. We also identify Runx1 and Ankrd1 (Marp1) as abundant myonucleus-enriched loading-induced genes. We observed that a strong induction of cell cycle regulators including Myc occurs with mechanical overload in myonuclei. Additionally, in vivo Myc-controlled gene expression in the plantaris was defined using a genetic muscle fiber-specific doxycycline-inducible Myc-overexpression model. We determined Myc is implicated in numerous aspects of gene expression during early-phase muscle fiber growth. Specifically, brief induction of Myc protein in muscle represses Reverbα, Reverbß, and Myh2 while increasing Rpl3, recapitulating gene expression in myonuclei during acute overload. Experimental, comparative, and in silico analyses place Myc at the center of a stable and actively transcribed, loading-responsive, muscle fiber-localized regulatory hub. Collectively, our experiments are a roadmap for understanding global and Myc-mediated transcriptional networks that regulate rapid remodeling in postmitotic cells. We provide open webtools for exploring the five RNA-seq datasets as a resource to the field.
Asunto(s)
Desarrollo de Músculos , Fibras Musculares Esqueléticas , Ratones , Animales , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Perfilación de la Expresión GénicaRESUMEN
One aspect of skeletal muscle memory is the ability of a previously trained muscle to hypertrophy more rapidly following a period of detraining. Although the molecular basis of muscle memory remains to be fully elucidated, one potential mechanism thought to mediate muscle memory is the permanent retention of myonuclei acquired during the initial phase of hypertrophic growth. However, myonuclear permanence is debated and would benefit from a meta-analysis to clarify the current state of the field for this important aspect of skeletal muscle plasticity. The objective of this study was to perform a meta-analysis to assess the permanence of myonuclei associated with changes in physical activity and ageing. When available, the abundance of satellite cells (SCs) was also considered given their potential influence on changes in myonuclear abundance. One hundred forty-seven peer-reviewed articles were identified for inclusion across five separate meta-analyses; (1-2) human and rodent studies assessed muscle response to hypertrophy; (3-4) human and rodent studies assessed muscle response to atrophy; and (5) human studies assessed muscle response with ageing. Skeletal muscle hypertrophy was associated with higher myonuclear content that was retained in rodents, but not humans, with atrophy (SMD = -0.60, 95% CI -1.71 to 0.51, P = 0.29, and MD = 83.46, 95% CI -649.41 to 816.32, P = 0.82; respectively). Myonuclear and SC content were both lower following atrophy in humans (MD = -11, 95% CI -0.19 to -0.03, P = 0.005, and SMD = -0.49, 95% CI -0.77 to -0.22, P = 0.0005; respectively), although the response in rodents was affected by the type of muscle under consideration and the mode of atrophy. Whereas rodent myonuclei were found to be more permanent regardless of the mode of atrophy, atrophy of ≥30% was associated with a reduction in myonuclear content (SMD = -1.02, 95% CI -1.53 to -0.51, P = 0.0001). In humans, sarcopenia was accompanied by a lower myonuclear and SC content (MD = 0.47, 95% CI 0.09 to 0.85, P = 0.02, and SMD = 0.78, 95% CI 0.37-1.19, P = 0.0002; respectively). The major finding from the present meta-analysis is that myonuclei are not permanent but are lost during periods of atrophy and with ageing. These findings do not support the concept of skeletal muscle memory based on the permanence of myonuclei and suggest other mechanisms, such as epigenetics, may have a more important role in mediating this aspect of skeletal muscle plasticity.
Asunto(s)
Fibras Musculares Esqueléticas , Sarcopenia , Animales , Atrofia , Humanos , Hipertrofia/patología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/patología , Sarcopenia/patologíaRESUMEN
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated ß-galactosidase (SA ß-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.