Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38686701

RESUMEN

CONTEXT: The role of glucagon-like peptide-1(GLP-1) in Type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHOD: We analysed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1(n=2127) individuals at risk of diabetes; cohort 2 (n=789) individuals with new-onset of T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin resistant phenotype and observe a strong independent relationship with male sex, increased adiposity and liver fat particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycaemia, higher adiposity, liver fat, male sex and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit and vegetables inpeople with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.

2.
J Am Soc Nephrol ; 34(12): 1991-2011, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787550

RESUMEN

SIGNIFICANCE STATEMENT: Kidney stone disease is a common disorder with poorly understood pathophysiology. Observational and genetic studies indicate that adiposity is associated with an increased risk of kidney stone disease. However, the relative contribution of general and central adipose depots and the mechanisms by which effects of adiposity on kidney stone disease are mediated have not been defined. Using conventional and genetic epidemiological techniques, we demonstrate that general and central adiposity are independently associated with kidney stone disease. In addition, one mechanism by which central adiposity increases risk of kidney stone disease is by increasing serum calcium concentration. Therapies targeting adipose depots may affect calcium homeostasis and help to prevent kidney stone disease. BACKGROUND: Kidney stone disease affects approximately 10% of individuals in their lifetime and is frequently recurrent. The disease is linked to obesity, but the mechanisms mediating this association are uncertain. METHODS: Associations of adiposity and incident kidney stone disease were assessed in the UK Biobank over a mean of 11.6 years/person. Genome-wide association studies and Mendelian randomization (MR) analyses were undertaken in the UK Biobank, FinnGen, and in meta-analyzed cohorts to identify factors that affect kidney stone disease risk. RESULTS: Observational analyses on UK Biobank data demonstrated that increasing central and general adiposity is independently associated with incident kidney stone formation. Multivariable MR, using meta-analyzed UK Biobank and FinnGen data, established that risk of kidney stone disease increases by approximately 21% per one standard deviation increase in body mass index (BMI, a marker of general adiposity) independent of waist-to-hip ratio (WHR, a marker of central adiposity) and approximately 24% per one standard deviation increase of WHR independent of BMI. Genetic analyses indicate that higher WHR, but not higher BMI, increases risk of kidney stone disease by elevating adjusted serum calcium concentrations (ß=0.12 mmol/L); WHR mediates 12%-15% of its effect on kidney stone risk in this way. CONCLUSIONS: Our study indicates that visceral adipose depots elevate serum calcium concentrations, resulting in increased risk of kidney stone disease. These findings highlight the importance of weight loss in individuals with recurrent kidney stones and suggest that therapies targeting adipose depots may affect calcium homeostasis and contribute to prevention of kidney stone disease.


Asunto(s)
Adiposidad , Cálculos Renales , Humanos , Adiposidad/genética , Calcio , Factores de Riesgo , Estudio de Asociación del Genoma Completo , Obesidad/complicaciones , Obesidad Abdominal/complicaciones , Obesidad Abdominal/genética , Relación Cintura-Cadera , Índice de Masa Corporal , Cálculos Renales/epidemiología , Cálculos Renales/etiología , Análisis de la Aleatorización Mendeliana
3.
Nature ; 622(7982): 329-338, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794186

RESUMEN

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Asunto(s)
Bancos de Muestras Biológicas , Proteínas Sanguíneas , Bases de Datos Factuales , Genómica , Salud , Proteoma , Proteómica , Humanos , Sistema del Grupo Sanguíneo ABO/genética , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/genética , COVID-19/genética , Descubrimiento de Drogas , Epistasis Genética , Fucosiltransferasas/metabolismo , Predisposición Genética a la Enfermedad , Plasma/química , Proproteína Convertasa 9/metabolismo , Proteoma/análisis , Proteoma/genética , Asociación entre el Sector Público-Privado , Sitios de Carácter Cuantitativo , Reino Unido , Galactósido 2-alfa-L-Fucosiltransferasa
4.
Wellcome Open Res ; 8: 165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736013

RESUMEN

Background: Resolving causal genes for type 2 diabetes at loci implicated by genome-wide association studies (GWAS) requires integrating functional genomic data from relevant cell types. Chromatin features in endocrine cells of the pancreatic islet are particularly informative and recent studies leveraging chromosome conformation capture (3C) with Hi-C based methods have elucidated regulatory mechanisms in human islets. However, these genome-wide approaches are less sensitive and afford lower resolution than methods that target specific loci. Methods: To gauge the extent to which targeted 3C further resolves chromatin-mediated regulatory mechanisms at GWAS loci, we generated interaction profiles at 23 loci using next-generation (NG) capture-C in a human beta cell model (EndoC-ßH1) and contrasted these maps with Hi-C maps in EndoC-ßH1 cells and human islets and a promoter capture Hi-C map in human islets. Results: We found improvements in assay sensitivity of up to 33-fold and resolved ~3.6X more chromatin interactions. At a subset of 18 loci with 25 co-localised GWAS and eQTL signals, NG Capture-C interactions implicated effector transcripts at five additional genetic signals relative to promoter capture Hi-C through physical contact with gene promoters. Conclusions: High resolution chromatin interaction profiles at selectively targeted loci can complement genome- and promoter-wide maps.

5.
PLoS Genet ; 19(8): e1010609, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37585454

RESUMEN

Diabetic retinopathy (DR) is a common complication of diabetes. Approximately 20% of DR patients have diabetic macular edema (DME) characterized by fluid leakage into the retina. There is a genetic component to DR and DME risk, but few replicable loci. Because not all DR cases have DME, we focused on DME to increase power, and conducted a multi-ancestry GWAS to assess DME risk in a total of 1,502 DME patients and 5,603 non-DME controls in discovery and replication datasets. Two loci reached GWAS significance (p<5x10-8). The strongest association was rs2239785, (K150E) in APOL1. The second finding was rs10402468, which co-localized to PLVAP and ANKLE1 in vascular / endothelium tissues. We conducted multiple sensitivity analyses to establish that the associations were specific to DME status and did not reflect diabetes status or other diabetic complications. Here we report two novel loci for risk of DME which replicated in multiple clinical trial and biobank derived datasets. One of these loci, containing the gene APOL1, is a risk factor in African American DME and DKD patients, indicating that this locus plays a broader role in diabetic complications for multiple ancestries. Trial Registration: NCT00473330, NCT00473382, NCT03622580, NCT03622593, NCT04108156.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Edema Macular/genética , Edema Macular/complicaciones , Retinopatía Diabética/genética , Retinopatía Diabética/complicaciones , Estudio de Asociación del Genoma Completo , Apolipoproteína L1/genética , Factores de Riesgo
6.
Genome Med ; 15(1): 45, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344884

RESUMEN

BACKGROUND: Dose-limiting toxicities significantly impact the benefit/risk profile of many drugs. Whole genome sequencing (WGS) in patients receiving drugs with dose-limiting toxicities can identify therapeutic hypotheses to prevent these toxicities. Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting neurological toxicity of chemotherapies with no effective approach for prevention. METHODS: We conducted a genetic study of time-to-first peripheral neuropathy event using 30× germline WGS data from whole blood samples from 4900 European-ancestry cancer patients in 14 randomized controlled trials. A substantial number of patients in these trials received taxane and platinum-based chemotherapies as part of their treatment regimen, either standard of care or in combination with the PD-L1 inhibitor atezolizumab. The trials spanned several cancers including renal cell carcinoma, triple negative breast cancer, non-small cell lung cancer, small cell lung cancer, bladder cancer, ovarian cancer, and melanoma. RESULTS: We identified a locus consisting of low-frequency variants in intron 13 of GRID2 associated with time-to-onset of first peripheral neuropathy (PN) indexed by rs17020773 (p = 2.03 × 10-8, all patients, p = 6.36 × 10-9, taxane treated). Gene-level burden analysis identified rare coding variants associated with increased PN risk in the C-terminus of GPR68 (p = 1.59 × 10-6, all patients, p = 3.47 × 10-8, taxane treated), a pH-sensitive G-protein coupled receptor (GPCR). The variants driving this signal were found to alter predicted arrestin binding motifs in the C-terminus of GPR68. Analysis of snRNA-seq from human dorsal root ganglia (DRG) indicated that expression of GPR68 was highest in mechano-thermo-sensitive nociceptors. CONCLUSIONS: Our genetic study provides insight into the impact of low-frequency and rare coding genetic variation on PN risk and suggests that further study of GPR68 in sensory neurons may yield a therapeutic hypothesis for prevention of CIPN.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Enfermedades del Sistema Nervioso Periférico , Femenino , Humanos , Antineoplásicos/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptores Acoplados a Proteínas G/genética , Taxoides/efectos adversos
7.
medRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090505

RESUMEN

Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.

8.
Brain Commun ; 5(2): fcad037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895957

RESUMEN

The aims of our study were to use whole genome sequencing in a cross-sectional cohort of patients to identify new variants in genes implicated in neuropathic pain, to determine the prevalence of known pathogenic variants and to understand the relationship between pathogenic variants and clinical presentation. Patients with extreme neuropathic pain phenotypes (both sensory loss and gain) were recruited from secondary care clinics in the UK and underwent whole genome sequencing as part of the National Institute for Health and Care Research Bioresource Rare Diseases project. A multidisciplinary team assessed the pathogenicity of rare variants in genes previously known to cause neuropathic pain disorders and exploratory analysis of research candidate genes was completed. Association testing for genes carrying rare variants was completed using the gene-wise approach of the combined burden and variance-component test SKAT-O. Patch clamp analysis was performed on transfected HEK293T cells for research candidate variants of genes encoding ion channels. The results include the following: (i) Medically actionable variants were found in 12% of study participants (205 recruited), including known pathogenic variants: SCN9A(ENST00000409672.1): c.2544T>C, p.Ile848Thr that causes inherited erythromelalgia, and SPTLC1(ENST00000262554.2):c.340T>G, p.Cys133Tr variant that causes hereditary sensory neuropathy type-1. (ii) Clinically relevant variants were most common in voltage-gated sodium channels (Nav). (iii) SCN9A(ENST00000409672.1):c.554G>A, pArg185His variant was more common in non-freezing cold injury participants than controls and causes a gain of function of NaV1.7 after cooling (the environmental trigger for non-freezing cold injury). (iv) Rare variant association testing showed a significant difference in distribution for genes NGF, KIF1A, SCN8A, TRPM8, KIF1A, TRPA1 and the regulatory regions of genes SCN11A, FLVCR1, KIF1A and SCN9A between European participants with neuropathic pain and controls. (v) The TRPA1(ENST00000262209.4):c.515C>T, p.Ala172Val variant identified in participants with episodic somatic pain disorder demonstrated gain-of-channel function to agonist stimulation. Whole genome sequencing identified clinically relevant variants in over 10% of participants with extreme neuropathic pain phenotypes. The majority of these variants were found in ion channels. Combining genetic analysis with functional validation can lead to a better understanding as to how rare variants in ion channels lead to sensory neuron hyper-excitability, and how cold, as an environmental trigger, interacts with the gain-of-function NaV1.7 p.Arg185His variant. Our findings highlight the role of ion channel variants in the pathogenesis of extreme neuropathic pain disorders, likely mediated through changes in sensory neuron excitability and interaction with environmental triggers.

9.
Diabetologia ; 66(5): 847-860, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36862161

RESUMEN

AIMS/HYPOTHESIS: There is limited information on how polygenic scores (PSs), based on variants from genome-wide association studies (GWASs) of type 2 diabetes, add to clinical variables in predicting type 2 diabetes incidence, particularly in non-European-ancestry populations. METHODS: For participants in a longitudinal study in an Indigenous population from the Southwestern USA with high type 2 diabetes prevalence, we analysed ten constructions of PS using publicly available GWAS summary statistics. Type 2 diabetes incidence was examined in three cohorts of individuals without diabetes at baseline. The adult cohort, 2333 participants followed from age ≥20 years, had 640 type 2 diabetes cases. The youth cohort included 2229 participants followed from age 5-19 years (228 cases). The birth cohort included 2894 participants followed from birth (438 cases). We assessed contributions of PSs and clinical variables in predicting type 2 diabetes incidence. RESULTS: Of the ten PS constructions, a PS using 293 genome-wide significant variants from a large type 2 diabetes GWAS meta-analysis in European-ancestry populations performed best. In the adult cohort, the AUC of the receiver operating characteristic curve for clinical variables for prediction of incident type 2 diabetes was 0.728; with the PS, 0.735. The PS's HR was 1.27 per SD (p=1.6 × 10-8; 95% CI 1.17, 1.38). In youth, corresponding AUCs were 0.805 and 0.812, with HR 1.49 (p=4.3 × 10-8; 95% CI 1.29, 1.72). In the birth cohort, AUCs were 0.614 and 0.685, with HR 1.48 (p=2.8 × 10-16; 95% CI 1.35, 1.63). To further assess the potential impact of including PS for assessing individual risk, net reclassification improvement (NRI) was calculated: NRI for the PS was 0.270, 0.268 and 0.362 for adult, youth and birth cohorts, respectively. For comparison, NRI for HbA1c was 0.267 and 0.173 for adult and youth cohorts, respectively. In decision curve analyses across all cohorts, the net benefit of including the PS in addition to clinical variables was most pronounced at moderately stringent threshold probability values for instituting a preventive intervention. CONCLUSIONS/INTERPRETATION: This study demonstrates that a European-derived PS contributes significantly to prediction of type 2 diabetes incidence in addition to information provided by clinical variables in this Indigenous study population. Discriminatory power of the PS was similar to that of other commonly measured clinical variables (e.g. HbA1c). Including type 2 diabetes PS in addition to clinical variables may be clinically beneficial for identifying individuals at higher risk for the disease, especially at younger ages.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Adulto , Adolescente , Adulto Joven , Preescolar , Niño , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Incidencia , Estudios Longitudinales , Estudio de Asociación del Genoma Completo , Factores de Riesgo
11.
J Allergy Clin Immunol ; 151(5): 1351-1356, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36343773

RESUMEN

BACKGROUND: Chronic spontaneous urticaria (CSU) is a dermatologic condition characterized by spontaneous, pruritic hives and/or angioedema that persists for 6 weeks or longer with no identifiable trigger. Antihistamines and second-line therapies such as omalizumab are effective for some CSU patients, but others remain symptomatic, with significant impact on quality of life. This variable response to treatment and autoantibody levels across patients highlight clinically heterogeneous subgroups. OBJECTIVE: We aimed to highlight pathways involved in CSU by investigating the genetics of CSU risk and subgroups. METHODS: We performed a genome-wide association study (GWAS) of 679 CSU patients and 4446 controls and a GWAS of chronic urticaria (CU)-index, which measures IgG autoantibodies levels, by comparing 447 CU index-low to 183 CU index-high patients. We also tested whether polygenic scores for autoimmune-related disorders were associated with CSU risk and CU index. RESULTS: We identified 2 loci significantly associated with disease risk. The strongest association mapped to position 56 of HLA-DQA1 (P = 1.69 × 10-9), where the arginine residue was associated with increased risk (odds ratio = 1.64). The second association signal colocalized with expression-quantitative trait loci for ITPKB in whole blood (Pcolocalization = .997). The arginine residue at position 56 of HLA-DQA1 was also associated with increased risk of CU index-high (P = 6.15 × 10-5, odds ratio = 1.86), while the ITKPB association was not (P = .64). Polygenic scores for 3 autoimmune-related disorders (hypothyroidism, type 1 diabetes, and vitiligo) were associated with CSU risk and CU index (P < 2.34 × 10-3, odds ratio > 1.72). CONCLUSION: A GWAS of CSU identified 2 genome-wide significant loci, highlighting the shared genetics between CU index and autoimmune disorders.


Asunto(s)
Urticaria Crónica , Urticaria , Humanos , Estudio de Asociación del Genoma Completo , Calidad de Vida , Enfermedad Crónica , Urticaria Crónica/genética , Urticaria/genética , Urticaria/inducido químicamente , Omalizumab/efectos adversos
12.
Nat Commun ; 13(1): 6642, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333282

RESUMEN

Metabolic traits are heritable phenotypes widely-used in assessing the risk of various diseases. We conduct a genome-wide association analysis (GWAS) of nine metabolic traits (including glycemic, lipid, liver enzyme levels) in 125,872 Korean subjects genotyped with the Korea Biobank Array. Following meta-analysis with GWAS from Biobank Japan identify 144 novel signals (MAF ≥ 1%), of which 57.0% are replicated in UK Biobank. Additionally, we discover 66 rare (MAF < 1%) variants, 94.4% of them co-incident to common loci, adding to allelic series. Although rare variants have limited contribution to overall trait variance, these lead, in carriers, substantial loss of predictive accuracy from polygenic predictions of disease risk from common variant alone. We capture groups with up to 16-fold variation in type 2 diabetes (T2D) prevalence by integration of genetic risk scores of fasting plasma glucose and T2D and the I349F rare protective variant. This study highlights the need to consider the joint contribution of both common and rare variants on inherited risk of metabolic traits and related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Humanos , Diabetes Mellitus Tipo 2/genética , Fenotipo , Pueblo Asiatico/genética , Glucemia/genética , Polimorfismo de Nucleótido Simple , Variación Genética , Predisposición Genética a la Enfermedad
13.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35763030

RESUMEN

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/metabolismo , Quinasas Similares a Doblecortina , Fibrosis , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/metabolismo , Polimorfismo de Nucleótido Simple/genética , Proteínas Serina-Treonina Quinasas/genética
15.
Sci Rep ; 12(1): 5574, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35368043

RESUMEN

Genome-wide association studies (GWAS) have identified many common variant loci associated with asthma susceptibility, but few studies investigate the genetics underlying moderate-to-severe asthma risk. Here, we present a whole-genome sequencing study comparing 3181 moderate-to-severe asthma patients to 3590 non-asthma controls. We demonstrate that asthma risk is genetically correlated with lung function measures and that this component of asthma risk is orthogonal to the eosinophil genetics that also contribute to disease susceptibility. We find that polygenic scores for reduced lung function are associated with younger asthma age of onset. Genome-wide, seven previously reported common asthma variant loci and one previously reported lung function locus, near THSD4, reach significance. We replicate association of the lung function locus in a recently published GWAS of moderate-to-severe asthma patients. We additionally replicate the association of a previously reported rare (minor allele frequency < 1%) coding variant in IL33 and show significant enrichment of rare variant burden in genes from common variant allergic disease loci. Our findings highlight the contribution of lung function genetics to moderate-to-severe asthma risk, and provide initial rare variant support for associations with moderate-to-severe asthma risk at several candidate genes from common variant loci.


Asunto(s)
Asma , Estudio de Asociación del Genoma Completo , Asma/genética , Predisposición Genética a la Enfermedad , Humanos , Pulmón , Secuenciación Completa del Genoma
16.
Commun Biol ; 5(1): 329, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393509

RESUMEN

South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-wide association meta-analysis with South Asian T2D cases (n = 16,677) and controls (n = 33,856), followed by combined analyses with Europeans (neff = 231,420). We identify 21 novel genetic loci for significant association with T2D (P = 4.7 × 10-8 to 5.2 × 10-12), to the best of our knowledge at the point of analysis. The loci are enriched for regulatory features, including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B, PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D between the top and bottom quartile. Our results provide further insights into the genetic mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis of data from across ancestral populations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Pueblo Asiatico/genética , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple
17.
Cell Metab ; 34(5): 661-666, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35421386

RESUMEN

We investigate the extent to which human genetic data are incorporated into studies that hypothesize novel links between genes and metabolic disease. To lower the barriers to using genetic data, we present an approach to enable researchers to evaluate human genetic support for experimentally determined hypotheses.


Asunto(s)
Enfermedades Metabólicas , Genética Humana , Humanos , Enfermedades Metabólicas/genética
18.
Hum Genet ; 141(8): 1431-1447, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35147782

RESUMEN

Drug development and biological discovery require effective strategies to map existing genetic associations to causal genes. To approach this problem, we selected 12 common diseases and quantitative traits for which highly powered genome-wide association studies (GWAS) were available. For each disease or trait, we systematically curated positive control gene sets from Mendelian forms of the disease and from targets of medicines used for disease treatment. We found that these positive control genes were highly enriched in proximity of GWAS-associated single-nucleotide variants (SNVs). We then performed quantitative assessment of the contribution of commonly used genomic features, including open chromatin maps, expression quantitative trait loci (eQTL), and chromatin conformation data. Using these features, we trained and validated an Effector Index (Ei), to map target genes for these 12 common diseases and traits. Ei demonstrated high predictive performance, both with cross-validation on the training set, and an independently derived set for type 2 diabetes. Key predictive features included coding or transcript-altering SNVs, distance to gene, and open chromatin-based metrics. This work outlines a simple, understandable approach to prioritize genes at GWAS loci for functional follow-up and drug development, and provides a systematic strategy for prioritization of GWAS target genes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Cromatina/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
19.
J Clin Endocrinol Metab ; 107(4): 1065-1077, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-34875679

RESUMEN

CONTEXT: Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key determinant of metabolic health, have been limited by the difficulty in linking predominantly noncoding variants to specific gene targets. Rare coding variant analyses provide greater confidence that a specific gene is involved, but do not necessarily indicate whether gain or loss of function (LoF) would be of most therapeutic benefit. OBJECTIVE: This work aimed to identify genes/proteins involved in determining fat distribution. METHODS: We combined the power of genome-wide analysis of array-based rare, nonsynonymous variants in 450 562 individuals in the UK Biobank with exome-sequence-based rare LoF gene burden testing in 184 246 individuals. RESULTS: The data indicate that the LoF of 4 genes (PLIN1 [LoF variants, P = 5.86 × 10-7], INSR [LoF variants, P = 6.21 × 10-7], ACVR1C [LoF + moderate impact variants, P = 1.68 × 10-7; moderate impact variants, P = 4.57 × 10-7], and PDE3B [LoF variants, P = 1.41 × 10-6]) is associated with a beneficial effect on body mass index-adjusted waist-to-hip ratio and increased gluteofemoral fat mass, whereas LoF of PLIN4 (LoF variants, P = 5.86 × 10-7 adversely affects these parameters. Phenotypic follow-up suggests that LoF of PLIN1, PDE3B, and ACVR1C favorably affects metabolic phenotypes (eg, triglycerides [TGs] and high-density lipoprotein [HDL] cholesterol concentrations) and reduces the risk of cardiovascular disease, whereas PLIN4 LoF has adverse health consequences. INSR LoF is associated with lower TG and HDL levels but may increase the risk of type 2 diabetes. CONCLUSION: This study robustly implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat counterintuitive insight into the potential consequences of targeting these molecules therapeutically.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptores de Activinas Tipo I/genética , Distribución de la Grasa Corporal , Diabetes Mellitus Tipo 2/genética , Exoma , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos
20.
JAMA Netw Open ; 4(12): e2136560, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854908

RESUMEN

Importance: Neuropathic pain (NP) has important clinical and socioeconomic consequences for individuals and society. Increasing evidence indicates that genetic factors make a significant contribution to NP, but genome-wide association studies (GWASs) are scant in this field and could help to elucidate susceptibility to NP. Objective: To identify genetic variants associated with NP susceptibility. Design, Setting, and Participants: This genetic association study included a meta-analysis of GWASs of NP using 3 independent cohorts: ie, Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS); Generation Scotland: Scottish Family Health Study (GS:SFHS); and the United Kingdom Biobank (UKBB). Data analysis was conducted from April 2018 to December 2019. Exposures: Individuals with NP (ie, case participants; those with pain of ≥3 months' duration and a Douleur Neuropathique en 4 Questions score ≥3) and individuals with no pain (ie, control participants) with or without diabetes from GoDARTS and GS:SFHS were identified using validated self-completed questionnaires. In the UKBB, self-reported prescribed medication and hospital records were used as a proxy to identify case participants (patients recorded as receiving specific anti-NP medicines) and control participants. Main Outcomes and Measures: GWAS was performed using linear mixed modeling. GWAS summary statistics were combined using fixed-effect meta-analysis. A total of 51 variants previously shown to be associated with NP were tested for replication. Results: This study included a total of 4512 case participants (2662 [58.9%] women; mean [SD] age, 61.7 [10.8] years) and 428 489 control participants (227 817 [53.2%] women; mean [SD] age, 62.3 [11.5] years) in the meta-analysis of 3 cohorts with European descent. The study found a genome-wide significant locus at chromosome 12q23.1, which mapped to SLC25A3 (rs369920026; odds ratio [OR] for having NP, 1.68; 95% CI, 1.40-2.02; P = 1.30 × 10-8), and a suggestive variant at 13q14.2 near CAB39L (rs7992766; OR, 1.09; 95% CI, 1.05-1.14; P = 1.22 × 10-7). These mitochondrial phosphate carriers and calcium binding genes are expressed in brain and dorsal root ganglia. Colocalization analyses using expression quantitative loci data found that the suggestive variant was associated with expression of CAB39L in the brain cerebellum (P = 1.01 × 10-14). None of the previously reported variants were replicated. Conclusions and Relevance: To our knowledge, this was the largest meta-analyses of GWAS to date. It found novel genetic variants associated with NP susceptibility. These findings provide new insights into the genetic architecture of NP and important information for further studies.


Asunto(s)
Cromosomas Humanos Par 12/genética , Predisposición Genética a la Enfermedad/genética , Neuralgia/genética , Polimorfismo de Nucleótido Simple/genética , Anciano , Estudios de Casos y Controles , Femenino , Estudios de Asociación Genética , Sitios Genéticos/genética , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Reino Unido , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA