Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38561226

RESUMEN

Aging dogs serve as a valuable preclinical model for Alzheimer's disease (AD) due to their natural age-related development of ß-amyloid (Aß) plaques, human-like metabolism, and large brains that are ideal for studying structural brain aging trajectories from serial neuroimaging. Here we examined the effects of chronic treatment with the calcineurin inhibitor (CNI) tacrolimus or the nuclear factor of activated T cells (NFAT)-inhibiting compound Q134R on age-related canine brain atrophy from a longitudinal study in middle-aged beagles (36 females, 7 males) undergoing behavioral enrichment. Annual MRI was analyzed using modern, automated techniques for region-of-interest-based and voxel-based volumetric assessments. We found that the frontal lobe showed accelerated atrophy with age, while the caudate nucleus remained relatively stable. Remarkably, the hippocampus increased in volume in all dogs. None of these changes were influenced by tacrolimus or Q134R treatment. Our results suggest that behavioral enrichment can prevent atrophy and increase the volume of the hippocampus but does not prevent aging-associated prefrontal cortex atrophy.


Asunto(s)
Envejecimiento , Atrofia , Encéfalo , Tacrolimus , Animales , Perros , Femenino , Atrofia/patología , Masculino , Envejecimiento/patología , Encéfalo/patología , Encéfalo/efectos de los fármacos , Tacrolimus/farmacología , Conducta Animal/efectos de los fármacos , Imagen por Resonancia Magnética
2.
Alzheimers Dement (Amst) ; 12(1): e12113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088896

RESUMEN

INTRODUCTION: Microglial cells play an important role in the development of Alzheimer's disease (AD). People with Down syndrome (DS) inevitably develop AD neuropathology (DSAD) by 40 years of age. We characterized the distribution of different microglial phenotypes in the brains of people with DS and DSAD. METHODS: Autopsy tissue from the posterior cingulate cortex (PCC) from people with DS, DSAD, and neurotypical controls was immunostained with the microglial marker Iba1 to assess five microglia morphological types. RESULTS: Individuals with DS have more hypertrophic microglial cells in their white matter. In the gray matter, individuals with DSAD had significantly fewer ramified microglia and more dystrophic microglia than controls and the younger individuals with DS. The DSAD group also exhibited more rod-shaped and amoeboid cells than the AD group. DISCUSSION: Individuals with DS and DSAD show a microglial phenotype that distinguishes them from non-DS controls.

3.
Neurobiol Dis ; 139: 104834, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173556

RESUMEN

The ε4 allele of Apolipoprotein (APOE4) is the strongest genetic risk factor for Alzheimer's disease (AD), the most common form of dementia. Cognitively normal APOE4 carriers have developed amyloid beta (Aß) plaques and cerebrovascular, metabolic and structural deficits decades before showing the cognitive impairment. Interventions that can inhibit Aß retention and restore the brain functions to normal would be critical to prevent AD for the asymptomatic APOE4 carriers. A major goal of the study was to identify the potential usefulness of rapamycin (Rapa), a pharmacological intervention for extending longevity, for preventing AD in the mice that express human APOE4 gene and overexpress Aß (the E4FAD mice). Another goal of the study was to identify the potential pharmacogenetic differences in response to rapamycin between the E4FAD and E3FAD mice, the mice with human APOE ε3 allele. We used multi-modal MRI to measure in vivo cerebral blood flow (CBF), neurotransmitter levels, white matter integrity, water content, cerebrovascular reactivity (CVR) and somatosensory response; used behavioral assessments to determine cognitive function; used biochemistry assays to determine Aß retention and blood-brain barrier (BBB) functions; and used metabolomics to identify brain metabolic changes. We found that in the E4FAD mice, rapamycin normalized bodyweight, restored CBF (especially in female), BBB activity for Aß transport, neurotransmitter levels, neuronal integrity and free fatty acid level, and reduced Aß retention, which were not observe in the E3FAD-Rapa mice. In contrast, E3FAD-Rapa mice had lower CVR responses, lower anxiety and reduced glycolysis in the brain, which were not seen in the E4FAD-Rapa mice. Further, rapamycin appeared to normalize lipid-associated metabolism in the E4FAD mice, while slowed overall glucose-associated metabolism in the E3FAD mice. Finally, rapamycin enhanced overall water content, water diffusion in white matter, and spatial memory in both E3FAD and E4FAD mice, but did not impact the somatosensory responses under hindpaw stimulation. Our findings indicated that rapamycin was able to restore brain functions and reduce AD risk for young, asymptomatic E4FAD mice, and there were pharmacogenetic differences between the E3FAD and E4FAD mice. As the multi-modal MRI methods used in the study are readily to be used in humans and rapamycin is FDA-approved, our results may pave a way for future clinical testing of the pharmacogenetic responses in humans with different APOE alleles, and potentially using rapamycin to prevent AD for asymptomatic APOE4 carriers.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Apolipoproteínas E/genética , Sirolimus/farmacología , Animales , Apolipoproteína E4/genética , Barrera Hematoencefálica/efectos de los fármacos , Cognición , Disfunción Cognitiva , Modelos Animales de Enfermedad , Genotipo , Ratones , Ratones Transgénicos , Farmacogenética , Placa Amiloide
4.
J Alzheimers Dis ; 67(1): 103-112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30452414

RESUMEN

Cerebrovascular pathology is a significant mediator in Alzheimer's disease (AD) in the general population. In people with Down syndrome (DS), the contribution of vascular pathology to dementia may play a similar role in age of onset and/or the rate of progression of AD. In the current study, we explored the extent of microbleeds (MBs) and the link between cerebral amyloid angiopathy (CAA) and MBs in the frontal cortex (FCTX) and occipital cortex (OCTX) in an autopsy series from individuals with DS (<40 years), DS with AD pathology (DSAD), sporadic AD, and control cases (2-83 years). Sections were immunostained against Aß1 - 40 and an adjacent section stained using Prussian blue for MBs. MBs were both counted and averaged in each case and CAA was scored based on previously published methods. MBs were more frequent in DS cases relative to controls but present to a similar extent as sporadic AD. This aligned with CAA scores, with more extensive CAA in DS relative to controls in both brain regions. CAA was also more frequent in DSAD cases relative to sporadic AD. We found CAA to be associated with MBs and that MBs increased with age in DS after 30 years of age in the OCTX and after 40 years of age in the FCTX. MB and CAA appear to be a significant contributors to the development of dementia in people with DS and are important targets for future clinical trials.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/patología , Síndrome de Down/complicaciones , Síndrome de Down/patología , Hemorragias Intracraneales/patología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/análisis , Autopsia , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Lóbulo Frontal/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Lóbulo Occipital/patología , Fragmentos de Péptidos/análisis , Adulto Joven
5.
Neurobiol Aging ; 54: 163-169, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28385551

RESUMEN

Beta-amyloid (Aß) deposition in brain accumulates as a function of age in people with Down syndrome (DS) with subsequent development into Alzheimer disease neuropathology, typically by 40 years of age. In vivo imaging using the Pittsburgh compound B (PiB) ligand has facilitated studies linking Aß, cognition, and dementia in DS. However, there are no studies of PiB binding across the lifespan in DS. The current study describes in vitro 3H-PiB binding in the frontal cortex of autopsy cases with DS compared to non-DS controls. Tissue from 64 cases included controls (n = 25) and DS (n = 39). In DS, 3H-PiB binding was significantly associated with age. After age 40 years in DS, 3H-PiB binding rose dramatically along with increasing individual variability. 3H-PiB binding correlated with the amount of Aß42. Using fixed frontal tissue and fluorescent 6-CN-PiB, neuritic and cored plaques along with extensive cerebral amyloid angiopathy showed 6-CN-PiB binding. These results suggest that cortical PiB binding as shown by positron emission tomography imaging reflects plaques and cerebral amyloid angiopathy in DS brain.


Asunto(s)
Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Compuestos de Anilina/metabolismo , Síndrome de Down/metabolismo , Lóbulo Frontal/metabolismo , Tiazoles/metabolismo , Adolescente , Adulto , Anciano , Autopsia , Angiopatía Amiloide Cerebral/diagnóstico por imagen , Niño , Preescolar , Cognición , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/psicología , Femenino , Lóbulo Frontal/diagnóstico por imagen , Humanos , Lactante , Ligandos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Unión Proteica , Adulto Joven
6.
Aging Dis ; 7(3): 267-77, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27330841

RESUMEN

Down syndrome (DS) is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Many of the neuropathological features of early-onset Alzheimer's disease (AD) including senile plaques and neurofibrillary tangles (NFTs) are also present in people with DS as a result of triplication of the amyloid precursor gene on chromosome 21. Evidence suggests that harboring one or both apolipoprotein E4 (APOE4) alleles may increase the risk for AD due to the proteolytic cleavage of apoE4 and a subsequent loss of function. To investigate a role for the apoE proteolysis in vivo, we compared three autopsy groups; 7 DS with AD neuropathology cases over 40 years, 5 young DS cases without AD pathology under 40 years (YDS) and 5 age-matched control cases over 40 years by immunohistochemistry utilizing an antibody that detects the amino-terminal fragment of apoE. Application of this antibody, termed the amino-terminal apoE fragment antibody (nApoECF) revealed labeling of pyramidal neurons in the frontal cortex of YDS cases, whereas in the DS-AD group, labeling with nApoECF was prominent within NFTs. NFT labeling with nApoECF was significantly greater in the hippocampus versus the frontal cortex in the same DS-AD cases, suggesting a regional distribution of truncated apoE. Colocalization immunofluorescence experiments indicated that 52.5% and 53.2% of AT8- and PHF-1-positive NFTs, respectively, also contained nApoECF. Collectively, these data support a role for the proteolytic cleavage of apoE in DS and suggest that apoE fragmentation is closely associated with NFTs.

7.
ACS Chem Neurosci ; 7(2): 171-6, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26682772

RESUMEN

Alzheimer's disease (AD) is a complex brain disorder that still remains ill defined. In order to understand the significance of binding of different clinical in vivo imaging ligands to the polymorphic pathological features of AD brain, the molecular characteristics of the ligand interacting with its specific binding site need to be defined. Herein, we observed that tritiated Pittsburgh Compound B ((3)H-PIB) can be displaced from synthetic Aß(1-40) and Aß(1-42) fibrils and from the PIB binding complex purified from human AD brain (ADPBC) by molecules containing a chalcone structural scaffold. We evaluated how substitution on the chalcone scaffold alters its ability to displace (3)H-PIB from the synthetic fibrils and ADPBC. By comparing unsubstituted core chalcone scaffolds along with the effects of bromine and methyl substitution at various positions, we found that attaching a hydroxyl group on the ring adjacent to the carbonyl group (ring I) of the parent member of the chalcone family generally improved the binding affinity of chalcones toward ADPBC and synthetic fibrils F40 and F42. Furthermore, any substitution on ring I at the ortho-position of the carbonyl group greatly decreases the binding affinity of the chalcones, potentially as a result of steric hindrance. Together with the finding that neither our chalcones nor PIB interact with the Congo Red/X-34 binding site, these molecules provide new tools to selectively probe the PIB binding site that is found in human AD brain, but not in brains of AD pathology animal models. Our chalcone derivatives also provide important information on the effects of fibril polymorphism on ligand binding.


Asunto(s)
Enfermedad de Alzheimer/patología , Proteínas Amiloidogénicas/metabolismo , Compuestos de Anilina/farmacocinética , Encéfalo/diagnóstico por imagen , Chalconas/metabolismo , Tiazoles/farmacocinética , Anciano , Alquenos/farmacocinética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Benzoatos/farmacocinética , Benzotiazoles , Sitios de Unión/efectos de los fármacos , Chalconas/síntesis química , Chalconas/química , Femenino , Colorantes Fluorescentes/farmacocinética , Humanos , Ligandos , Fragmentos de Péptidos/metabolismo , Tomografía de Emisión de Positrones , Tiazoles/metabolismo , Tritio/farmacocinética
8.
Neurobiol Aging ; 36(9): 2468-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26103884

RESUMEN

Down syndrome (DS) is the most common genetic cause of intellectual disability and is primarily caused by the triplication of chromosome 21. The overexpression of amyloid precursor protein gene may be sufficient to drive Alzheimer's disease (AD) neuropathology that is observed in virtually all individuals with DS by the age of 40 years. There is relatively little information about inflammation in the DS brain and how the genetics of DS may alter inflammatory responses and modify the course of AD pathogenesis in this disorder. Using the macrophage classification system of M1, M2a, M2b, and M2c inflammatory phenotypes, we have shown that the early stages of AD are associated with a bias toward an M1 or M2a phenotype. In later stages of AD, markers of M1, M2a and M2c are elevated. We now report the inflammatory phenotype in a DS autopsy series to compare this with the progression in sporadic AD. Tissue from young DS cases (under 40 years of age, pre-AD) show a bias toward M1 and M2b states with little M2a or M2c observed. Older DS cases (over 40 with AD pathology) show a distinct bias toward an M2b phenotype. Importantly, this is distinct from sporadic AD where the M2b phenotype has been rarely, if ever observed in postmortem studies. Stimulated by immune complex activation of microglial cells and toll-like receptor activation, the M2b phenotype represents a unique neuroinflammatory state in diseased brain and may have significant implications for therapeutic intervention for persons with DS.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Citocinas/genética , Síndrome de Down/complicaciones , Encefalitis/diagnóstico , Encefalitis/etiología , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Antígenos HLA-DR/metabolismo , Humanos , Macrófagos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Fenotipo , Adulto Joven
9.
Artículo en Inglés | MEDLINE | ID: mdl-25594074

RESUMEN

Down syndrome is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Triplication of all or part of human chromosome 21 has been considered as the main cause of Down syndrome. Due to the location of the amyloid precursor protein on chromosome 21, many of the neuropathological features of early-onset Alzheimer's disease including senile plaques and neurofibrillary tangles are also present in Down syndrome patients who are either demented or nondemented. Significant advances in medical treatment have increased longevity in people with Down syndrome resulting in an increased population that may be subjected to many of the same risk factors as those with Alzheimer's disease. It is well established that harboring one or both apolipoprotein E4 alleles greatly increases the risk for Alzheimer's disease. However, whether apolipoprotein E4 contributes to an earlier onset of dementia or increased mortality in Down syndrome patients is still a matter of debate. The purpose of this mini review is to provide an updated assessment on apolipoprotein E4 status and risk potential of developing dementia and mortality associated with Down syndrome.

10.
J Alzheimers Dis ; 32(4): 1029-42, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22886019

RESUMEN

Alzheimer's disease (AD) involves multiple pathological processes in the brain, including increased inflammation and oxidative damage, as well as the accumulation of amyloid-ß (Aß) plaques. We hypothesized that a combinatorial therapeutic approach to target these multiple pathways may provide cognitive and neuropathological benefits for AD patients. To test this hypothesis, we used a canine model of human aging and AD. Aged dogs naturally develop learning and memory impairments, human-type Aß deposits, and oxidative damage in the brain. Thus, 9 aged beagles (98-115 months) were treated with a medical food cocktail containing (1) an extract of turmeric containing 95% curcuminoids; (2) an extract of green tea containing 50% epigallocatechingallate; (3) N-acetyl cysteine; (4) R-alpha lipoic acid; and (5) an extract of black pepper containing 95% piperine. Nine similarly aged dogs served as placebo-treated controls. After 3 months of treatment, 13 dogs completed a variable distance landmark task used as a measure of spatial attention. As compared to placebo-treated animals, dogs receiving the medical food cocktail had significantly lower error scores (t11 = 4.3, p = 0.001) and were more accurate across all distances (F(1,9) = 20.7, p = 0.001), suggesting an overall improvement in spatial attention. Measures of visual discrimination learning, executive function and spatial memory, and levels of brain and cerebrospinal fluid Aß were unaffected by the cocktail. Our results indicate that this medical food cocktail may be beneficial for improving spatial attention and motivation deficits associated with impaired cognition in aging and AD.


Asunto(s)
Envejecimiento/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/administración & dosificación , Atención/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Espacial/efectos de los fármacos , Envejecimiento/psicología , Enfermedad de Alzheimer/psicología , Animales , Atención/fisiología , Camellia sinensis , Curcuma , Perros , Quimioterapia Combinada , Humanos , Extractos Vegetales/administración & dosificación , Conducta Espacial/fisiología
11.
J Pharm Sci ; 100(3): 1009-21, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21280052

RESUMEN

Protein solubility is a critical attribute in monoclonal antibody (mAb) formulation development as insolubility issues can negatively impact drug stability, activity, bioavailability, and immunogenicity. A high-throughput adaptation of an experimental method previously established in the literature to determine apparent protein solubility is described, where polyethylene glycol (PEG) is used to reduce protein solubility in a quantitatively definable manner. Utilizing an automated, high-throughput system, an immunoglobulin G (IgG)1 mAb in a variety of buffer conditions was exposed to increasing concentrations of PEG and the amount of protein remaining in solution was determined. Comparisons of PEG(midpt) values (the weight% PEG in solution required to decrease the protein concentration by 50%) to extrapolated values of apparent protein solubility (in the absence of PEG) were performed. The determination of PEG(midpt) by using sigmoidal curve fitting of the entire data set was shown to be the most precise and reproducible approach for use during high-throughput screening experiments. The high-throughput PEG methodology was then applied to the screening of different formulations to optimize relative protein solubility profiles (weight% PEG vs. protein concentration and their corresponding PEG(midpt) values) in terms of solution pH and buffer ions for both human and chimeric IgG1 mAbs. Other comparisons included evaluating relative solubility profiles of an IgG1 mAb produced from different cell lines (Chinese hamster ovary vs. murine) as well as for different IgG1 mAbs (produced from the same cell line) in a series of formulation buffers. Based on these comparisons, it was concluded that rapid, high-throughput determinations of relative protein solubility profiles can be used as a practical, experimental tool to compare mAb preparations and to rank order buffer and pH conditions during formulation development.


Asunto(s)
Anticuerpos Monoclonales/química , Portadores de Fármacos/química , Ensayos Analíticos de Alto Rendimiento , Inmunoglobulina G/química , Polietilenglicoles/química , Proteínas/química , Algoritmos , Animales , Tampones (Química) , Células CHO , Precipitación Química , Cricetinae , Cricetulus , Composición de Medicamentos , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Ratones , Método de Montecarlo , Reproducibilidad de los Resultados , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA