Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 105(4): 1091-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18182050

RESUMEN

Serotonin-1A (5-HT(1A) receptors in the dorsal raphe nucleus (DRN) function as somatodendritic autoreceptors, and therefore play a critical role in controlling serotonergic cell firing and serotonergic neurotransmission. We hypothesized that a decrease in the capacity of 5-HT(1A) receptors to activate G proteins was a general mechanism by which 5-HT(1A) receptors in the DRN are desensitized following chronic administration of selective serotonin reuptake inhibitors (SSRIs). Using in vivo microdialysis, we found that the ability of the 5-HT(1A) receptor agonist 8-hydroxydipropylaminotetralin hydrobromide (8-OH-DPAT) (0.025 mg/kg, s.c.) to decrease extracellular 5-HT levels in striatum was attenuated following chronic treatment of rats with the SSRIs sertraline or fluoxetine. This apparent desensitization of somatodendritic 5-HT(1A) autoreceptor function was not accompanied by a decrease in 5-HT(1A) receptor sites in the coupled, high-affinity agonist state as measured by the binding of [3H]8-OH-DPAT. In marked contrast to what was observed following chronic administration of fluoxetine, 5-HT(1A) receptor-stimulated [(35)S]GTPgammaS binding in the DRN was not altered following chronic sertraline treatment. Thus, desensitization of 5-HT(1A) somatodendritic autoreceptor function following chronic sertraline administration appears not to be due to a decrease in the capacity 5-HT(1A) receptors to activate G proteins in the DRN. Our findings suggest that the SSRIs may not be a homogeneous class of antidepressant drug with regard to the mechanism by which the function of somatodendritic 5-HT(1A) autoreceptors is regulated.


Asunto(s)
Núcleos del Rafe/fisiología , Receptor de Serotonina 5-HT1A/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Antagonistas del Receptor de Serotonina 5-HT1 , Sertralina/administración & dosificación , Animales , Masculino , Núcleos del Rafe/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología
2.
Catheter Cardiovasc Interv ; 68(2): 271-9, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16810698

RESUMEN

OBJECTIVE: The purpose of this study was to evaluate the long-term effects of the DEVAX AXXESS biolimus eluting stent (BES) in a porcine coronary model, compared with those of bare metal stent (BMS) and polymer only stent (POS) controls. BACKGROUND: Excessive neointimal growth has been identified as a major cause of late failure of percutaneous coronary interventions. The effect of drug eluting from self-expanding stents for prevention of neointimal hyperplasia has not been studied before. The DEVAX AXXESS is a self-expanding nickel titanium stent, coated with antiproliferative compound-biolimus. METHODS: Twenty juvenile farm swine, 25-35 kg in weight, 3-6 months in age were used. Each animal received a stent to the left anterior descending artery, left circumflex or right coronary arteries as permitted per anatomy. The chronic vascular response after BES implantation was compared with that after BMS and POS implantation at 28, 90, and 180 days follow-up. RESULTS: The 28-day outcome by quantitative coronary angiography (QCA) showed significant increase in minimal luminal diameter (MLD) in the BES (MLD: 2.90 +/- 0.97, 2.39 +/- 0.90, 1.59 +/- 0.91; P = 0.009) compared with BMS and POS, respectively. By histomorphometric analysis, there was also a corresponding significant reduction in neointimal tissue proliferation in the BES (average neointimal area: 2.78 +/- 0.07, 5.46 +/- 0.66, 8.42 +/- 0.85; P = 0.002) compared with that in BMS and POS controls, respectively at 28-days follow-up. At 90 and 180 days, the mean neointimal area was not significantly different between the BES and the controls. CONCLUSIONS: BES favorably modulates the neointimal tissue formation for 28 days, in the porcine coronary model. Long-term inhibition of neointimal hyperplasia is not sustained most likely because of the delayed cellular proliferation and inflammation in the vessel wall.


Asunto(s)
Aleaciones , Materiales Biocompatibles Revestidos/administración & dosificación , Stents , Animales , Angiografía Coronaria , Hiperplasia , Inmunosupresores/administración & dosificación , Modelos Animales , Poliésteres , Diseño de Prótesis , Sirolimus/administración & dosificación , Porcinos , Factores de Tiempo , Túnica Íntima/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...