Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mar Policy ; 144: 105239, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35911785

RESUMEN

The responses of small-scale coastal fisheries to pauses in effort and trade are an important test of natural resource management theories with implications for the many challenges of managing common-pool resources. Three Covid-19 curfews provided a natural experiment to evaluate fisheries responses adjacent a marine reserve and in a management system that restricted small-mesh drag nets. Daily catch weights in ten fish landings were compared before and after the curfew period to test the catch-only hypothesis that the curfew would reduce effort and increase catch per unit effort, per area yields, and incomes. Interviews with key informants indicated that fisheries effort and trade were disrupted but less so in the gear-restricted rural district than the more urbanized reserve landing sites. The expected increase in catches and incomes was evident in some sites adjacent the reserve but not the rural gear restricted fisheries. Differences in compliance and effort initiated by the curfew, changes in gear, and various negative environmental conditions are among the explanations for the variable catch responses. Rates of change over longer periods in CPUE were stable among marine reserve adjacent landing sites but declined faster after the curfew in the gear-restricted fisheries. Two landing sites nearest the southern end of the reserve displayed a daily 45 % increase in CPUE, 25-30 % increase in CPUA, and a 45-56 % increase in incomes. Results suggest that recovering stocks will succeed where authorities can achieve compliance, near marine reserves, and fisheries lacking additional environmental stresses.

2.
Conserv Biol ; 32(1): 159-170, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28678422

RESUMEN

Reducing the capture of small fish, discarded fish, and bycatch is a primary concern of fisheries managers who propose to maintain high yields, species diversity, and ecosystem functions. Modified fishing gear is one of the primary ways to reduce by-catch and capture of small fish. The outcomes of gear modification may depend on competition among fishers using other similar resources and other gears in the same fishing grounds and the subsequent adoption or abandonment of modified gears by fishers. We evaluated adoption of modified gear, catch size, catch per unit effort (CPUE), yield, and fisher incomes in a coral reef fishery in which a 3-cm escape gap was introduced into traditional traps. There were 26.1 (SD 4.9) fishers who used the experimental landing sites and 228(SD 15.7) fishers who used the control landing sites annually over 7 years. The size of fish increased by 10.6% in the modified traps, but the catch of smaller fish increased by 11.2% among the other gears. There was no change in the overall CPUE, yields, or per area incomes; rather, yield benefits were redistributed in favor of the unmodified gears. For example, estimated incomes of fishers who adopted the modified traps remained unchanged but increased for net and spear fishers. Fishers using escape-gap traps had a high proportion of income from larger fish, which may have led to a perception of benefits, high status, and no abandonment of the modified traps. The commensal rather than competitive outcome may explain the continued use of escape-gap traps 3 years after their introduction. Trap fishers showed an interest in negotiating other management improvements, such as increased mesh sizes for nets, which could ultimately catalyze community-level decisions and restrictions that could increase their profits.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Conservación de los Recursos Naturales , Arrecifes de Coral , Peces
3.
Ecology ; 97(7): 1862-1872, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27859162

RESUMEN

Trophic cascades caused by a reduction in predators of sea urchins have been reported in Indian Ocean and Caribbean coral reefs. Previous studies have been constrained by their site-specific nature and limited spatial replication, which has produced site and species-specific understanding that can potentially preclude larger community-organization nuances and generalizations. In this study, we aimed to evaluate the extent and variability of the cascade community in response to fishing across ~23° of latitude and longitude in coral reefs in the southwestern Indian Ocean. The taxonomic composition of predators of sea urchins, the sea urchin community itself, and potential effects of changing grazer abundance on the calcifying benthic organisms were studied in 171 unique coral reef sites. We found that geography and habitat were less important than the predator-prey relationships. There were seven sea urchin community clusters that aligned with a gradient of declining fishable biomass and the abundance of a key predator, the orange-lined triggerfish (Balistapus undulatus). The orange-lined triggerfish dominated where sea urchin numbers and diversity were low but the relative abundance of wrasses and emperors increased where sea urchin numbers were high. Two-thirds of the study sites had high sea urchin biomass (>2,300 kg/ha) and could be dominated by four different sea urchin species, Echinothrix diadema, Diadema savignyi, D. setosum, and Echinometra mathaei, depending on the community of sea urchin predators, geographic location, and water depth. One-third of the sites had low sea urchin biomass and diversity and were typified by high fish biomass, predators of sea urchins, and herbivore abundance, representing lightly fished communities with generally higher cover of calcifying algae. Calcifying algal cover was associated with low urchin abundance where as noncalcifying fleshy algal cover was not clearly associated with herbivore abundance. Fishing of the orange-lined triggerfish, an uncommon, slow-growing by-catch species with little monetary value drives the cascade and other predators appear unable to replace its ecological role in the presence of fishing. This suggests that restrictions on the catch of this species could increase the calcification service of coral reefs on a broad scale.


Asunto(s)
Arrecifes de Coral , Cadena Alimentaria , Animales , Biomasa , Región del Caribe , Ecología , Ecosistema , Monitoreo del Ambiente , Peces , Erizos de Mar
4.
Conserv Biol ; 30(5): 1089-101, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26991737

RESUMEN

We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/economía , Valores Sociales , Animales , Geografía , Humanos , Políticas
5.
Nat Commun ; 7: 10491, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26839155

RESUMEN

Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions.


Asunto(s)
Biodiversidad , Clima , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Peces , Estaciones del Año , Animales , Tamaño Corporal , Humanos , Estrés Fisiológico , Temperatura
6.
Proc Biol Sci ; 282(1821): 20151938, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26702040

RESUMEN

Ecological baselines are disappearing and it is uncertain how marine reserves, here called fisheries closures, simulate pristine communities. We tested the influence of fisheries closure age, size and compliance on recovery of community biomass and life-history metrics towards a baseline. We used census data from 324 coral reefs, including 41 protected areas ranging between 1 and 45 years of age and 0.28 and 1430 km(2), and 36 sites in a remote baseline, the Chagos Archipelago. Fish community-level life histories changed towards larger and later maturing fauna with increasing closure age, size and compliance. In high compliance closures, community biomass levelled at approximately 20 years and 10 km(2) but was still only at approximately 30% of the baseline and community growth rates were projected to slowly decline for more than 100 years. In low compliance and young closures, biomass levelled at half the value and time as high compliance closures and life-history metrics were not predicted to reach the baseline. Biomass does not adequately reflect the long-time scales for full recovery of life-history characteristics, with implications for coral reef management.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Peces , Animales , Ecosistema , Explotaciones Pesqueras , Océano Índico , Estadios del Ciclo de Vida , Factores de Tiempo
7.
Conserv Biol ; 29(2): 409-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25494592

RESUMEN

The failure of fisheries management among multispecies coral reef fisheries is well documented and has dire implications for the 100 million people engaged in these small-scale operations. Weak or missing management institutions, a lack of research capacity, and the complex nature of these ecosystems have heralded a call for ecosystem-based management approaches. However, ecosystem-based management of coral reef fisheries has proved challenging due to the multispecies nature of catches and the diversity of fish functional roles. We used data on fish communities collected from 233 individual sites in 9 western Indian Ocean countries to evaluate changes in the site's functional composition and associated life-history characteristics along a large range of fish biomass. As biomass increased along this range, fish were larger and grew and matured more slowly while the abundance of scraping and predatory species increased. The greatest changes in functional composition occurred below relatively low standing stock biomass (<600 kg/ha); abundances of piscivores, apex predators, and scraping herbivores were low at very light levels of fishing. This suggests potential trade-offs in ecosystem function and estimated yields for different management systems. Current fishing gear and area restrictions are not achieving conservation targets (proposed here as standing stock biomass of 1150 kg/ha) and result in losses of life history and ecological functions. Fish in reefs where destructive gears were restricted typically had very similar biomass and functions to young and low compliance closures. This indicates the potentially important role of fisheries restrictions in providing some gains in biomass and associated ecological functions when fully protected area enforcement potential is limited and likely to fail. Our results indicate that biomass alone can provide broad ecosystem-based fisheries management targets that can be easily applied even where research capacity and information is limited. Of particular value, is our finding that current management tools may be used to reach key ecosystem-based management targets, enabling ecosystem-based management in many socioeconomic contexts.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Explotaciones Pesqueras/métodos , Peces/fisiología , Animales , Océano Índico
8.
Mar Pollut Bull ; 80(1-2): 107-13, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24486038

RESUMEN

This study provides a descriptive analysis of the North Male, Maldives seven years after the 1998 bleaching disturbance to determine the state of the coral community composition, the recruitment community, evidence for recovery, and adaptation to thermal stress. Overall, hard coral cover recovered at a rate commonly reported in the literature but with high spatial variability and shifts in taxonomic composition. Massive Porites, Pavona, Synarea, and Goniopora were unusually common in both the recruit and adult communities. Coral recruitment was low and some coral taxa, namely Tubipora, Seriatopora, and Stylophora, were rarer than expected. A study of the bleaching response to a thermal anomaly in 2005 indicated that some taxa, including Leptoria, Platygyra, Favites, Fungia, Hydnophora, and Galaxea astreata, bleached as predicted while others, including Acropora, Pocillopora, branching Porites, Montipora, Stylophora, and Alveopora, bleached less than predicted. This indicates variable-adaptation potentials among the taxa and considerable potential for ecological reorganization of the coral community.


Asunto(s)
Adaptación Fisiológica , Antozoos/fisiología , Arrecifes de Coral , Monitoreo del Ambiente , Temperatura , Animales , Calentamiento Global , Islas del Oceano Índico , Dinámica Poblacional
9.
Mar Pollut Bull ; 64(3): 602-13, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22240204

RESUMEN

Cages and fertilizers were used at Glover's Atoll, Belize to test the relative importance of nitrogen (N) and phosphorus (P) to microbial euendolithic communities (bacteria, algae and fungi) and their bioerosion rates of Strombus gigas shells after 56-days of exposure. By the end of the experiment, the abundance of green algae was higher than cyanobacteria and fungi in N and N+P treatments, although green algae did not increase proportionally with increasing N concentrations, suggesting that green algae were co-limited by P and N. In contrast, cyanobacteria abundance increased with increasing P concentration, suggesting that cyanobacteria were P-limited. Fungi were not significantly affected by the addition of nutrients. Microbioerosion rates in the N and N+P treatments were 2-times greater than rates in the P treatment and 15-times greater than the control treatment. Results demonstrate that increased nutrient concentrations on coral reefs may increase microbioerosion rates, and variations in nutrient ratios can modify microborers community composition.


Asunto(s)
Nitrógeno/farmacología , Fósforo/farmacología , Contaminantes Químicos del Agua/farmacología , Exoesqueleto , Animales , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Belice , Biodegradación Ambiental/efectos de los fármacos , Ecosistema , Monitoreo del Ambiente , Eutrofización , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Hongos/fisiología , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/fisiología , Nitrógeno/análisis , Fósforo/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis
10.
Proc Natl Acad Sci U S A ; 107(43): 18256-61, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20176941

RESUMEN

Decadal-scale observations of marine reserves suggest that indirect effects on taxa that occur through cascading trophic interactions take longer to develop than direct effects on target species. Combining and analyzing a unique set of long-term time series of ecologic data in and out of fisheries closures from disparate regions, we found that the time to initial detection of direct effects on target species (±SE) was 5.13 ± 1.9 years, whereas initial detection of indirect effects on other taxa, which were often trait mediated, took significantly longer (13.1 ± 2.0 years). Most target species showed initial direct effects, but their trajectories over time were highly variable. Many target species continued to increase, some leveled off, and others decreased. Decreases were due to natural fluctuations, fishing impacts from outside reserves, or indirect effects from target species at higher trophic levels. The average duration of stable periods for direct effects was 6.2 ± 1.2 years, even in studies of more than 15 years. For indirect effects, stable periods averaged 9.1 ± 1.6 years, although this was not significantly different from direct effects. Populations of directly targeted species were more stable in reserves than in fished areas, suggesting increased ecologic resilience. This is an important benefit of marine reserves with respect to their function as a tool for conservation and restoration.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Biología Marina/tendencias , Animales , Ecosistema , Peces , Cadena Alimentaria , Dinámica Poblacional , Investigación/tendencias , Especificidad de la Especie , Factores de Tiempo
11.
Conserv Biol ; 23(3): 662-71, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19245493

RESUMEN

Priorities for conservation, management, and associated activities will differ based on the interplay between nearness of ecosystems to full recovery from a disturbance (pristineness), susceptibility to climate change (environmental susceptibility [ES]), and capacity of human communities to cope with and adapt to change (social adaptive capacity [AC]). We studied 24 human communities and adjacent coral reef ecosystems in 5 countries of the southwestern Indian Ocean. We used ecological measures of abundance and diversity of fishes and corals, estimated reef pristineness, and conducted socioeconomic household surveys to determine the AC of communities adjacent to selected coral reefs. We also used Web-based oceanographic and coral mortality data to predict each site's ES to climate warming. Coral reefs of Mauritius and eastern Madagascar had low ES and consequently were not predicted to be affected strongly by warm water, although these sites were differentiated by the AC of the human community. The higher AC in Mauritius may increase the chances for successful self-initiated recovery and protective management of reefs of this island. In contrast, Madagascar may require donor support to build AC as a prerequisite to preservation efforts. The Seychelles and Kenya had high ES, but their levels of AC and disturbance differed. The high AC in the Seychelles could be used to develop alternatives to dependence on coral reef resources and reduce the effects of climate change. Pristineness weighted toward measures of fish recovery was greatest for Kenya's marine protected areas; however, most protected areas in the region were far from pristine. Conservation priorities and actions with realistic chances for success require knowledge of where socioecological systems lie among the 3 axes of environment, ecology, and society.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Modelos Teóricos , Cambio Social , Humanos , Islas del Oceano Índico , Kenia , Factores Socioeconómicos , Especificidad de la Especie , Tanzanía
12.
Conserv Biol ; 23(1): 124-30, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18778267

RESUMEN

The emerging world crisis created by declining fish stocks poses a challenge to resource users and managers. The problem is particularly acute in poor nations, such as those in East Africa, where fishing is an important subsistence activity but high fishing intensity and use of destructive gear have resulted in declining catches. In this context developing effective management strategies requires an understanding of how fishers may respond to declines in catch. We examined the readiness of 141 Kenyan fishers to stop fishing under hypothetical scenarios of declines in catch and how socioeconomic conditions influenced their decisions. As expected, the proportion of fishers that would exit the fishery increased with magnitude of decline in catch. Fishers were more likely to say they would stop fishing if they were from households that had a higher material style of life and a greater number of occupations. Variables such as capital investment in the fishery and the proportion of catch sold had weak, nonsignificant relationships. Our finding that fishers from poorer households would be less likely to exit a severely declining fishery is consistent with the literature on poverty traps, which suggests the poor are unable to mobilize the necessary resources to overcome either shocks or chronic low-income situations and consequently may remain in poverty. This finding supports the proposition that wealth generation and employment opportunities directed at the poorest fishers may help reduce fishing effort on overexploited fisheries, but successful interventions such as these will require an understanding of the socioeconomic context in which fishers operate.


Asunto(s)
Explotaciones Pesqueras/economía , Peces/fisiología , Factores Socioeconómicos , Animales , Análisis Factorial , Humanos , Entrevistas como Asunto , Kenia , Densidad de Población , Pobreza , Análisis de Componente Principal , Recursos Humanos
13.
Oecologia ; 155(1): 169-77, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17972104

RESUMEN

The hypothesis that herbivory is higher in areas without fishing and will increase the rate at which hard coral communities return to pre-disturbance conditions was tested in and out of the marine protected areas (MPA) of Kenya after the 1998 El Niño Southern Oscillation (ENSO). Herbivory was estimated by assay and biomass methods, and both methods indicated higher herbivory in fishery closures. Despite higher herbivory, the effect of the ENSO disturbance was larger within these closures, with reefs undergoing a temporary transition from dominance by hard and soft coral to a temporary dominance of turf and erect algae that ended in the dominance of calcifying algae, massive Porites, Pocillopora and a few faviids six years after the disturbance. The fished reefs changed the least but had a greater cover of turf and erect algae and sponge shortly after the disturbance. Higher herbivory in the fishery closures reduced the abundance and persistence of herbivore-susceptible erect algae and created space and appropriate substratum for recruiting corals. Nonetheless, other post-settlement processes may have had strong influences such that annual rates of coral recovery were low ( approximately 2%) and not different between the management regimes. Recovery, as defined as and measured by the return to pre-disturbance coral cover and the dominant taxa, was slower in fishery closures than unmanaged reefs.


Asunto(s)
Antozoos , Explotaciones Pesqueras , Conceptos Meteorológicos , Animales , Biomasa , Clima , Ecosistema , Eucariontes/crecimiento & desarrollo , Peces/crecimiento & desarrollo , Océano Índico , Fenómenos Fisiológicos de las Plantas , Densidad de Población
14.
Mar Pollut Bull ; 54(12): 1947-57, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17963793

RESUMEN

Nitrogen and phosphorous fertilizers were used to determine their short-term summer effects on algal colonization, abundance, and species composition in moderate herbivory treatments. Secondary succession of algae on coral skeletons was examined in four treatments: an untreated control, a pure phosphate fertilizer, a pure nitrogen fertilizer, and an equal mix of the two fertilizers. Turf algae cover was the only measure of algae abundance to respond significantly to fertilization. Turf cover was three times higher in treatments with added nitrogen when compared with the pure phosphorus treatment. These turfs were dominated by green and cyanobacteria taxa, namely Enteromorpha prolifera, Lyngbya confervoides, and two species of Cladophora. The phosphate treatment was dominated by encrusting corallines and the cyanobacteria L. confervoides, while the controls had the highest cover of frondose brown algae, namely Padina sanctae-crucis and two species of Dictyota. Results indicate that turf algae were co-limited by nitrogen and phosphorus but enrichment appeared to inhibit brown frondose algae that currently dominate these reefs. Number of species was lowest on the pure phosphorus and nitrogen treatments, highest in the controls and intermediate in the mixed treatments, which suggests that diversity is reduced most by an imbalanced nutrient ratio.


Asunto(s)
Antozoos , Eucariontes/efectos de los fármacos , Fertilizantes , Nitrógeno/farmacología , Fósforo/farmacología , Animales , Belice , Biomasa , Cianobacterias/efectos de los fármacos , Cianobacterias/crecimiento & desarrollo , Interacciones Farmacológicas , Ecosistema , Eucariontes/clasificación , Eucariontes/crecimiento & desarrollo , Dinámica Poblacional , Factores de Tiempo
15.
Mar Pollut Bull ; 50(5): 566-75, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15907499

RESUMEN

We studied the responses of algae, corals, and small fish to elevated inorganic fertilizer, organic matter, and their combination over a 49-day summer period in cages that simulated the coral reef in the remote Glovers reef atoll, Belize. The addition of organic matter reduced while fertilization had no effect on the numbers of herbivorous damsel and parrotfishes. All measures of algal biomass were influenced by fertilization. The combined inorganic and organic enrichment produced the highest algal biomass, which is most likely due to the combined effect of higher nutrients and lower herbivory. The cover of turf and total algae were influenced by all treatments and their interactions and most strongly and positively influenced by fertilization followed by organic matter and the combination of organic matter and inorganic fertilizer. The inorganic and combined treatments were both dominated by two turf algae, Enteromorpha prolifera and Digenia simplex, while the nonfertilized treatments were dominated by brown frondose algae Lobophora variegata, Padina sanctae, and Dictyota cervicornis. The organic matter treatment had greater cover of P. sanctae and D. cervicornis than the untreated control, which was dominated by Lobophora variegata, also the dominant algae on the nearby patch reefs. Crustose corallines grew slowly ( approximately 2.5 mm/49 days) and were not influenced by the treatments when grown on vertical surfaces but decreased on horizontal coral plates in the combined organic matter and fertilization treatment. No mortality occurred for the two coral species that were added to the cages. Porites furcata darkened in the fertilized cages while there was a mix of paling and darkening for a small amount of the coral tissue of Diploria labyrinthiformes. Inorganic fertilization stimulates small filamentous turf algae and Symbiodinium living in coral but inhibits brown frondose algae. Organic matter inhibits small herbivorous fish, L. variegata, and encrusting coralline algae when growing on horizontal surfaces.


Asunto(s)
Antozoos/crecimiento & desarrollo , Ecosistema , Eucariontes/crecimiento & desarrollo , Fertilizantes , Perciformes/crecimiento & desarrollo , Análisis de Varianza , Animales , Belice , Dinámica Poblacional
16.
Mar Pollut Bull ; 48(3-4): 327-35, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14972585

RESUMEN

We compared the bleaching and mortality response (BMI) of 19 common scleractinian corals to an anomalous warm-water event in 1998 to determine the degree of variation between depths, sites, and regions. Mombasa corals experienced a greater temperature anomaly than those on the Great Barrier Reef (GBR) sites and this was reflected in the greater BMI response of most taxa. Comparing coral taxa in different sites at the same depth produced high correlation coefficients in the bleaching response in Kenya at 2 m (r=0.86) and GBR at 6 m depth sites (r=0.80) but less in the GBR for shallow 2 m sites (r=0.49). The pattern of taxa susceptibility was remarkably consistent between the regions. Coral taxa explained 52% of the variation in the response of colonies to bleaching between these two regions (Kenya BMI=0.90 GBR BMI+26; F(1,19) - 18.3; p < 0.001; r2 = 0.52). Stylophora and Pocillopora were consistently susceptible while Cyphastrea, Goniopora Galaxea and Pavona were resistant in both regions. Three taxa behaved differently between the two regions; Acropora, and branching Porites were both moderately affected on the GBR but were highly affected in Kenya while the opposite was true for Pavona. These results suggest that a colonies response to bleaching is phylogenetically constrained, emphasizing the importance of features of the host's physiology or morphology in determining the response to thermal stress.


Asunto(s)
Antozoos/fisiología , Pigmentación , Temperatura , Animales , Australia , Clasificación , Clima , Monitoreo del Ambiente , Kenia , Mortalidad , Dinámica Poblacional
17.
Mar Pollut Bull ; 44(6): 441-51, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12146827

RESUMEN

The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p < 0.06) in the fertilized compared to open-top cages. Algal species composition was influenced by all treatments with a maximum between-treatment Bray-Curtis similarity of only 29%. The fertilized cages showed rapid colonization by a mixed turf community largely composed of the filamentous brown (Hincksia mitchelliae) and green (Enteromorpha prolifera) species. Algal cover in the fertilized cages leveled at 80% after 20 days compared to less than 50% in the other treatments. There was no evidence that A. cervicornis suppressed algal colonization compared to the unmanipulated controls. Instead, the herbivore susceptible Padina sanctae-crucis was the most abundant algae followed by Jania capillacea in this treatment in contrast to the more chemically defended Dictyota menstrualis that dominated the unmanipulated controls. We conclude that A. cervicornis was not suppressing algae as a group and its loss cannot account for the observed changes in algal abundance in most reefs except for creating space. In contrast, A. cervicornis appears to attract aggressive damselfish that may reduce herbivory by larger herbivores. Phosphorus enrichment can lead to rapid colonization of space by filamentous turf communities but not high biomass and dominance of erect frondose algae within 50 days. Moderate levels of herbivory by large-bodied herbivores promoted moderately herbivore-resistant erect brown and green algae that are commonly reported on disturbed reefs. Consequently, all the studied factors influenced algal communities but seldom as commonly predicted.


Asunto(s)
Antozoos , Eucariontes , Peces , Fósforo/metabolismo , Animales , Belice , Biomasa , Ecosistema , Conducta Alimentaria , Dinámica Poblacional
18.
J Exp Mar Biol Ecol ; 262(2): 133-153, 2001 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-11445084

RESUMEN

During feeding, echinoids remove a large proportion of calcium carbonate in addition to the algae growing on dead coral and are consequently of importance in estimating the turnover of organic and inorganic carbon in coral reefs. Rates of herbivory and the erosion of dead coral substratum, referred to as bioerosion, by the most abundant echinoid species in Kenyan reefs, Echinothrix diadema (Linnaeus), Diadema setosum (Leske), D. savignyi (Michelin) and Echinometra mathaei (de Blainville), were compared in three different reef categories with different histories of fishing and its exclusion. These were reefs: (i) protected within Marine National Parks, which exclude all forms of fishing, coral and shell collection for more than 25 years; (ii) one reef within a Marine Park, which has received protection from fishing activities for 8 years (referred to as 'newly protected' reef); and (iii) unprotected reefs, which experience heavy fishing and some coral collection. The aim was to investigate the grazing and bioerosion activity by the above echinoid species in these reef categories. We surveyed sea urchin population densities and determined their rates of bioerosion and herbivory per individual and square meter. Individual rates of bioerosion and herbivory, of the species D. setosum, D. savignyi and E. diadema were estimated from laboratory gut content analysis and gut evacuation experiments in the field, using elevated underwater cages. Individual rates of bioerosion and herbivory of E. mathaei were obtained from a previous field study [J. Exp. Mar. Biol. Ecol. 147 (1991) 121]. Sea urchin bioerosion was greater than herbivory for all studied species and proportional to the body size of the sea urchin species. The large-bodied E. diadema exhibited the highest bioerosion and herbivory rates (5.5+/-0.9 and 2.2+/-0.3 g individual(-1) day(-1), respectively) followed by D. setosum (1.8+/-0.3 and 1.1+/-0.2 g individual(-1) day(-1)) and D. savignyi (0.7+/-0.2 and 0.4+/-0.1 g individual(-1) day(-1)). Highest sea urchin densities were recorded at unprotected reefs (6.2+/-1.5 individual m(-2)), and therefore, bioerosion and herbivory by sea urchins were also highest in this reef category (1180+/-230 g CaCO(3) m(-2) year(-1) and 450+/-77 g algae m(-2) year(-1)). Protected reefs recorded 20 times lower sea urchin bioerosion and herbivory rates (50.3+/-25.8 g CaCO(3) m(-2) year(-1) and 20.7+/-10.4 g algae m(-2) year(-1)), due to the low sea urchin population densities in these reefs (0.06+/-0.01 individual m(-2)). The newly protected reef, with intermediate number of sea urchins (1.2+/-0.1 individual m(-2)), had intermediate rates of sea urchin bioerosion and herbivory (711+/-157 g CaCO(3) m(-2) year(-1) and 299+/-63 g algae m(-2) year(-1)). These findings suggest that echinoids are important in the carbon cycle and reef development, and that fishing can influence these ecological processes.

19.
Oecologia ; 83(3): 362-370, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28313008

RESUMEN

Large differences in community structure of sea urchins and finfish have been observed in Kenyan reef lagoons. Differences have been attributed to removal of finfish predators through human fishing activities. This study attempted to determine (i) the major sea urchin finfish predators, (ii) the effect of predation on sea-urchin community structure, and (iii) the possible effect of sea urchin increases and finfish decreases on the lagoonal substrate. Six reefs, two protected and four unprotected, were compared for differences in finfish abundance, sea urchin abundance and diversity and substrate cover, diversity and complexity. Comparisons between protected and unprotected reefs indicated that finfish populations were ca. 4 x denser in protected than unprotected reefs. Sea urchin populations were >100 x denser and predation rates on a sea urchin, Echinometra mathaei, were 4 x lower in unprotected than in protected reefs. The balistidae (triggerfish) was the single sea-urchin finfish predator family which had a higher population density in protected than in unprotected reefs. Balistid density was positively correlated with predation rates on tethered E. mathaei (r=0.88; p<0.025) and negatively correlated with total sea-urchin density (r=-0.89; p<0.025) on the six reefs. We conclude from observations that the balistids Balistaphus undulatus and Rhinecanthus aculeatus are the dominant sea-urchin predators. The sea-urchin assemblage had its greatest diversity and species richness at intermediate predation rates and low to intermediate sea-urchin densities. At low predation rates and high sea-urchin density E. mathaei dominated the assemblage's species composition. Preferential predation on the competitive dominant maintains the assemblage's diversity, supporting the compensatory mortality hypothesis (Connell 1978) of coral reef diversity. Protected reefs had greater cover of hard coral, calcareous and coralline algae, and greater substrate diversity and topographic complexity than unprotected reefs which had greater algal turf and sponge cover. Coral cover and topographic complexity were negatively correlated with total sea urchin density. Although experimentation is lacking, these substrate changes may be due to the switch from finfish to sea-urchins as consumers which results from overfishing of finfish. Removal of top invertebrate-eating carnivores appears to have cascading effects on the entire coral reef ecosystem.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA