Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Child Fam Psychol Rev ; 26(4): 975-993, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676364

RESUMEN

The evidence-based treatment (EBT) movement has primarily focused on core intervention content or treatment fidelity and has largely ignored practitioner skills to manage interpersonal process issues that emerge during treatment, especially with difficult-to-treat adolescents (delinquent, substance-using, medical non-adherence) and those of color. A chief complaint of "real world" practitioners about manualized treatments is the lack of correspondence between following a manual and managing microsocial interpersonal processes (e.g. negative affect) that arise in treating "real world clients." Although family-based EBTs share core similarities (e.g. focus on family interactions, emphasis on practitioner engagement, family involvement), most of these treatments do not have an evidence base regarding common implementation and treatment process problems that practitioners experience in delivering particular models, especially in mid-treatment when demands on families to change their behavior is greatest in treatment - a lack that characterizes the field as a whole. Failure to effectively address common interpersonal processes with difficult-to-treat families likely undermines treatment fidelity and sustained use of EBTs, treatment outcome, and contributes to treatment dropout and treatment nonadherence. Recent advancements in wearables, sensing technologies, multivariate time-series analyses, and machine learning allow scientists to make significant advancements in the study of psychotherapy processes by looking "under the skin" of the provider-client interpersonal interactions that define therapeutic alliance, empathy, and empathic accuracy, along with the predictive validity of these therapy processes (therapeutic alliance, therapist empathy) to treatment outcome. Moreover, assessment of these processes can be extended to develop procedures for training providers to manage difficult interpersonal processes while maintaining a physiological profile that is consistent with astute skills in psychotherapeutic processes. This paper argues for opening the "black box" of therapy to advance the science of evidence-based psychotherapy by examining the clinical interior of evidence-based treatments to develop the next generation of audit- and feedback- (i.e., systemic review of professional performance) supervision systems.


Asunto(s)
Alianza Terapéutica , Adolescente , Humanos , Inteligencia Artificial , Empatía , Psicoterapia/métodos , Resultado del Tratamiento
2.
JMIR Mhealth Uhealth ; 9(10): e32301, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636729

RESUMEN

BACKGROUND: Prehospitalization documentation is a challenging task and prone to loss of information, as paramedics operate under disruptive environments requiring their constant attention to the patients. OBJECTIVE: The aim of this study is to develop a mobile platform for hands-free prehospitalization documentation to assist first responders in operational medical environments by aggregating all existing solutions for noise resiliency and domain adaptation. METHODS: The platform was built to extract meaningful medical information from the real-time audio streaming at the point of injury and transmit complete documentation to a field hospital prior to patient arrival. To this end, the state-of-the-art automatic speech recognition (ASR) solutions with the following modular improvements were thoroughly explored: noise-resilient ASR, multi-style training, customized lexicon, and speech enhancement. The development of the platform was strictly guided by qualitative research and simulation-based evaluation to address the relevant challenges through progressive improvements at every process step of the end-to-end solution. The primary performance metrics included medical word error rate (WER) in machine-transcribed text output and an F1 score calculated by comparing the autogenerated documentation to manual documentation by physicians. RESULTS: The total number of 15,139 individual words necessary for completing the documentation were identified from all conversations that occurred during the physician-supervised simulation drills. The baseline model presented a suboptimal performance with a WER of 69.85% and an F1 score of 0.611. The noise-resilient ASR, multi-style training, and customized lexicon improved the overall performance; the finalized platform achieved a medical WER of 33.3% and an F1 score of 0.81 when compared to manual documentation. The speech enhancement degraded performance with medical WER increased from 33.3% to 46.33% and the corresponding F1 score decreased from 0.81 to 0.78. All changes in performance were statistically significant (P<.001). CONCLUSIONS: This study presented a fully functional mobile platform for hands-free prehospitalization documentation in operational medical environments and lessons learned from its implementation.


Asunto(s)
Software de Reconocimiento del Habla , Habla , Documentación , Humanos , Tecnología
3.
Med Biol Eng Comput ; 58(7): 1419-1430, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32314170

RESUMEN

In cell-based research, the process of visually monitoring cells generates large image datasets that need to be evaluated for quantifiable information in order to track the effectiveness of treatments in vitro. With the traditional, end-point assay-based approach being error-prone, and existing computational approaches being complex, we tested existing machine learning frameworks to find methods that are relatively simple, yet powerful enough to accomplish the goal of analyzing cell microscopy data. This paper details the machine learning pipeline for pixel-based classification and object-based classification. Furthermore, it compares the performances of three classifiers. The classifiers evaluated were the fast-random forest (RF), the sequential minimal optimization (SMO), and the Bayesian network (BN). Images were first preprocessed using smoothing and contrast methods found in FIJI. For pixel-based classification, the preprocessed images were fed into the Trainable Waikato Segmentation (TWS). For object-based classification, training and classification were conducted within the Waikato Environment for Knowledge Analysis (WEKA) interface. All classifiers' performance was evaluated using the WEKA experimental explorer. In terms of performance, the BN had the lowest classification accuracy for both the pixel-based and object-based model. The object-based SMO classifier had the best performance with the lowest mean absolute error of 0.05. The TWS and WEKA interface allows users to easily create and train classifiers for image analysis. However, for analyzing large image datasets, they are not ideal. Grapical abstract.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neuroglía/citología , Aprendizaje Automático Supervisado , Área Bajo la Curva , Teorema de Bayes , Células Cultivadas , Humanos , Microscopía Confocal/métodos , Neuroglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...