Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioessays ; 42(12): e2000103, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33169418

RESUMEN

Reproduction and immunity are energy intensive, intimately linked processes in most organisms. In women, pregnancy is associated with widespread immunological adaptations that alter immunity to many diseases, whereas, immune dysfunction has emerged as a major cause for infertility in both men and women. Deciphering the molecular bases of this dynamic association is inherently challenging in mammals. This relationship has been traditionally studied in fast-living, invertebrate species, often in the context of resource allocation between life history traits. More recently, these studies have advanced our understanding of the mechanistic underpinnings of the immunity-fertility dialogue. Here, we review the molecular connections between reproduction and immunity from the perspective of human pregnancy to mechanistic discoveries in laboratory organisms. We focus particularly on recent invertebrate studies identifying conserved signaling pathways and transcription factors that regulate resource allocation and shape the balance between reproductive status and immune health.


Asunto(s)
Fertilidad , Infertilidad , Transducción de Señal , Animales , Femenino , Humanos , Masculino , Embarazo , Reproducción
3.
G3 (Bethesda) ; 6(12): 3913-3925, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27678523

RESUMEN

The germ line efficiently combats numerous genotoxic insults to ensure the high fidelity propagation of unaltered genomic information across generations. Yet, germ cells in most metazoans also intentionally create double-strand breaks (DSBs) to promote DNA exchange between parental chromosomes, a process known as crossing over. Homologous recombination is employed in the repair of both genotoxic lesions and programmed DSBs, and many of the core DNA repair proteins function in both processes. In addition, DNA repair efficiency and crossover (CO) distribution are both influenced by local and global differences in chromatin structure, yet the interplay between chromatin structure, genome integrity, and meiotic fidelity is still poorly understood. We have used the xnd-1 mutant of Caenorhabditis elegans to explore the relationship between genome integrity and crossover formation. Known for its role in ensuring X chromosome CO formation and germ line development, we show that xnd-1 also regulates genome stability. xnd-1 mutants exhibited a mortal germ line, high embryonic lethality, high incidence of males, and sensitivity to ionizing radiation. We discovered that a hypomorphic allele of mys-1 suppressed these genome instability phenotypes of xnd-1, but did not suppress the CO defects, suggesting it serves as a separation-of-function allele. mys-1 encodes a histone acetyltransferase, whose homolog Tip60 acetylates H2AK5, a histone mark associated with transcriptional activation that is increased in xnd-1 mutant germ lines, raising the possibility that thresholds of H2AK5ac may differentially influence distinct germ line repair events. We also show that xnd-1 regulated him-5 transcriptionally, independently of mys-1, and that ectopic expression of him-5 suppressed the CO defects of xnd-1 Our work provides xnd-1 as a model in which to study the link between chromatin factors, gene expression, and genome stability.


Asunto(s)
Caenorhabditis elegans/genética , Cromatina/genética , Intercambio Genético , Inestabilidad Genómica , Cromosoma X , Alelos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , Fertilidad/genética , Regulación de la Expresión Génica , Células Germinativas/metabolismo , Meiosis/genética , Mutación , Fenotipo , Radiación Ionizante , Transgenes
4.
Genetics ; 203(1): 133-45, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26936927

RESUMEN

Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Línea Celular , Expresión Génica , Orden Génico , Sitios Genéticos , Mutación de Línea Germinal , Complejos Multiproteicos/metabolismo , Mutágenos/toxicidad , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Recombinasa Rad51/genética , Reparación del ADN por Recombinación/efectos de los fármacos
5.
PLoS Genet ; 12(2): e1005788, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26862916

RESUMEN

Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation.


Asunto(s)
Adaptación Fisiológica , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Factores de Transcripción Forkhead/metabolismo , Células Germinativas/metabolismo , Homeostasis , Metabolismo de los Lípidos , Factores de Elongación de Péptidos/metabolismo , Animales , Dieta , Regulación hacia Abajo/genética , Ácidos Grasos/metabolismo , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica , Longevidad , Mutación/genética , Biosíntesis de Proteínas/genética , Receptores Notch/metabolismo , Reproducción , Transcriptoma/genética , Triglicéridos/metabolismo , Regulación hacia Arriba/genética
6.
J Biol Chem ; 285(6): 3705-3712, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-19940136

RESUMEN

The endonuclease ERCC1-XPF incises the damaged strand of DNA 5' to a lesion during nucleotide excision repair (NER) and has additional, poorly characterized functions in interstrand cross-link repair, double-strand break repair, and homologous recombination. XPA, another key factor in NER, interacts with ERCC1 and recruits it to sites of damage. We identified ERCC1 residues that are critical for the interaction with XPA and assessed their importance for NER in vitro and in vivo. Mutation of two conserved residues (Asn-110 and Tyr-145) located in the XPA-binding site of ERCC1 dramatically affected NER but not nuclease activity on model DNA substrates. In ERCC1-deficient cells expressing ERCC1(N110A/Y145A), the nuclease was not recruited to sites of UV damage. The repair of UV-induced (6-4)photoproducts was severely impaired in these cells, and they were hypersensitive to UV irradiation. Remarkably, the ERCC1(N110A/Y145A) protein rescues the sensitivity of ERCC1-deficient cells to cross-linking agents. Our studies suggest that ERCC1-XPF engages in different repair pathways through specific protein-protein interactions and that these functions can be separated through the selective disruption of these interactions. We discuss the impact of these findings for understanding how ERCC1 contributes to resistance of tumor cells to therapeutic agents such as cisplatin.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Transducción de Señal , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Secuencia de Aminoácidos , Animales , Asparagina/genética , Asparagina/metabolismo , Sitios de Unión/genética , Células CHO , Línea Celular , Células Cultivadas , Cricetinae , Cricetulus , Daño del ADN , Reparación del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Endonucleasas/química , Endonucleasas/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Spodoptera , Transfección , Tirosina/genética , Tirosina/metabolismo , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...