Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743596

RESUMEN

Protein Kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer to two catalytic (C) subunits. Recently, the L50R variant in the gene encoding the RIß subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIß-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined postmortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry, and behavioral assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIß is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIß-L50R mouse model. We define RIß-L50R as a causal mutation driving an age-dependent behavioral and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIß dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the C-subunit protects the RIß-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIß-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.

2.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38586044

RESUMEN

Elevated intraocular pressure (IOP) triggers glaucoma by damaging the output neurons of the retina called retinal ganglion cells (RGCs). This leads to the loss of RGC signaling to visual centers of the brain such as the dorsolateral geniculate nucleus (dLGN), which is critical for processing and relaying information to the cortex for conscious vision. In response to altered levels of activity or synaptic input, neurons can homeostatically modulate postsynaptic neurotransmitter receptor numbers, allowing them to scale their synaptic responses to stabilize spike output. While prior work has indicated unaltered glutamate receptor properties in the glaucomatous dLGN, it is unknown whether glaucoma impacts dLGN inhibition. Here, using DBA/2J mice, which develop elevated IOP beginning at 6-7 months of age, we tested whether the strength of inhibitory synapses on dLGN thalamocortical relay neurons is altered in response to the disease state. We found an enhancement of feed-forward disynaptic inhibition arising from local interneurons along with increased amplitude of quantal inhibitory synaptic currents. A combination of immunofluorescence staining for the GABA A -α1 receptor subunit, peak-scaled nonstationary fluctuation analysis, and measures of homeostatic synaptic scaling indicated this was the result of an approximately 1.4-fold increase in GABA receptor number at post-synaptic inhibitory synapses, although several pieces of evidence strongly indicate a non-uniform scaling across inhibitory synapses within individual relay neurons. Together, these results indicate an increase in inhibitory synaptic strength in the glaucomatous dLGN, potentially pointing toward homeostatic compensation for disruptions in network and neuronal function triggered by increased IOP. Significance Statement: Elevated eye pressure in glaucoma leads to loss of retinal outputs to the dorsolateral geniculate nucleus (dLGN), which is critical for relaying information to the cortex for conscious vision. Alterations in neuronal activity, as could arise from excitatory synapse loss, can trigger homeostatic adaptations to synaptic function that attempt to maintain activity within a meaningful dynamic range, although whether this occurs uniformly at all synapses within a given neuron or is a non-uniform process is debated. Here, using a mouse model of glaucoma, we show that dLGN inhibitory synapses undergo non-uniform upregulation due to addition of post-synaptic GABA receptors. This is likely to be a neuronal adaptation to glaucomatous pathology in an important sub-cortical visual center.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA