Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(24): 4940-4949, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38809109

RESUMEN

The synthesis of a biologically relevant 2-amino-N3-alkylamido 4-quinazolinone has been accomplished in four steps from commercially available materials using design principles from both modular and divergent synthesis. N3-Alkylation of 2-chloro-4(3H)-quinazolinone using methyl bromoacetate, followed by C2-amination produced a suitable scaffold for introducing molecular diversity. Optimization of alkylation conditions afforded full regioselectivity, enabling exclusive access to the N-alkylated isomer. Subsequent C2-amination using piperidine, pyrrolidine, or diethylamine, followed by amide bond formation using variously substituted phenethylamines, generated fifteen unique 4-quinazolinones bearing C2-amino and N3-alkylamido substituents. These efforts highlight the reciprocal influence of C2 and N3 substitution on functionalization at either position, establish an effective synthetic pathway toward 2,N3-disubstituted 4-quinazolinones, and enable preliminary bioactivity studies while providing an experiential learning opportunity for undergraduate student researchers.

2.
Environ Sci Technol ; 57(7): 2779-2791, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36758188

RESUMEN

Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.


Asunto(s)
Antioxidantes , Benzoquinonas , Fenilendiaminas , Goma , Antioxidantes/análisis , Antioxidantes/química , Antioxidantes/clasificación , Fenilendiaminas/análisis , Fenilendiaminas/química , Fenilendiaminas/clasificación , Goma/química , Benzoquinonas/análisis , Benzoquinonas/química , Benzoquinonas/clasificación , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem
3.
J Clin Virol ; 159: 105373, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603329

RESUMEN

BACKGROUND: In spring of 2022, an outbreak of monkeypox (mpox) spread worldwide. Here, we describe performance characteristics of monkeypox virus (MPXV)-specific and pan-orthopoxvirus qPCR assays for clinical use. METHODS: We validated probe-based qPCR assays targeting MPXV-specific loci F3L and G2R (genes MPXVgp052/OPG065 and MPXVgp002 and gp190/OPG002, respectively) and a pan-orthopoxvirus assay targeting the E9L locus (MPXVgp057/OPG071). Clinical samples and synthetic controls were extracted using the Roche MP96 or Promega Maxwell 48 instrument. qPCR was performed on the AB7500 thermocycler. Synthetic control DNA and high concentration clinical samples were quantified by droplet PCR. Cross-reactivity was evaluated for camelpox and cowpox genomic DNA, vaccinia culture supernatant, and HSV- and VZV-positive clinical specimens. We also tested the performance of the F3L assay using dry swabs, Aptima vaginal and rectal swabs, nasopharyngeal, rectal, and oral swabs, cerebrospinal fluid, plasma, serum, whole blood, breastmilk, urine, saliva, and semen. RESULTS: The MPXV-F3L assay is reproducible at a limit of detection (LoD) of 65.6 copies/mL of viral DNA in viral transport medium/universal transport medium (VTM/UTM), or 3.3 copies/PCR reaction. No cross-reactivity with herpesviruses or other poxviruses was observed. MPXV-F3L detects MPXV DNA in alternative specimen types, with an LoD ranging between 260-1000 copies/mL, or 5.7-10 copies/PCR reaction. In clinical swab VTM specimens, MPXV-F3L and MPXV-G2R assays outperformed OPXV-E9L by an average of 2.4 and 2.8 Cts, respectively. MPXV-G2R outperformed MPXV-F3L by 0.4 Cts, consistent with presence of two copies of G2R present in labile inverted terminal repeats (ITRs) of MPXV genome. CONCLUSIONS: MPXV is readily detected by qPCR using three clinically validated assays.


Asunto(s)
Monkeypox virus , Mpox , Femenino , Humanos , Monkeypox virus/genética , Mpox/diagnóstico , Mpox/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas de Amplificación de Ácido Nucleico , ADN Viral/genética , ADN Viral/análisis
4.
J Am Chem Soc ; 143(41): 16890-16901, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34614361

RESUMEN

Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.


Asunto(s)
Productos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA