Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(6): C1573-C1589, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557357

RESUMEN

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) reduce blood pressure (BP) in patients with hypertension, yet the precise molecular mechanisms remain elusive. SGLT2i inhibits proximal tubule (PT) NHE3-mediated sodium reabsorption in normotensive rodents, yet no hypotensive effect is observed under this scenario. This study examined the effect of empagliflozin (EMPA) on renal tubular sodium transport in normotensive and spontaneously hypertensive rats (SHRs). It also tested the hypothesis that EMPA-mediated PT NHE3 inhibition in normotensive rats is associated with upregulation of distal nephron apical sodium transporters. EMPA administration for 14 days reduced BP in 12-wk-old SHRs but not in age-matched Wistar rats. PT NHE3 activity was inhibited by EMPA treatment in both Wistar and SHRs. In Wistar rats, EMPA increased NCC activity, mRNA expression, protein abundance, and phosphorylation levels, but not in SHRs. SHRs showed higher NKCC2 activity and an abundance of cleaved ENaC α and γ subunits compared with Wistar rats, none of which were affected by EMPA. Another set of male Wistar rats was treated with EMPA, the NCC inhibitor hydrochlorothiazide (HCTZ), and EMPA combined with HCTZ or vehicle for 14 days. In these rats, BP reduction was observed only with combined EMPA and HCTZ treatment, not with either drug alone. These findings suggest that NCC upregulation counteracts EMPA-mediated inhibition of PT NHE3 in male normotensive rats, maintaining their baseline BP. Moreover, the reduction of NHE3 activity without further upregulation of major apical sodium transporters beyond the PT may contribute to the BP-lowering effect of SGLT2i in experimental models and patients with hypertension.NEW & NOTEWORTHY This study suggests that reduced NHE3-mediated sodium reabsorption in the renal proximal tubule may account, at least in part, for the BP-lowering effect of SGLT2 inhibitors in the setting of hypertension. It also demonstrates that chronic treatment with SGLT2 inhibitors upregulates NCC activity, phosphorylation, and expression in the distal tubule of normotensive but not hypertensive rats. SGLT2 inhibitor-mediated upregulation of NCC seems crucial to counteract proximal tubule natriuresis in subjects with normal BP.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Hipertensión , Ratas Endogámicas SHR , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Intercambiador 3 de Sodio-Hidrógeno , Regulación hacia Arriba , Animales , Masculino , Intercambiador 3 de Sodio-Hidrógeno/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética , Intercambiador 3 de Sodio-Hidrógeno/antagonistas & inhibidores , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Hipertensión/fisiopatología , Glucósidos/farmacología , Compuestos de Bencidrilo/farmacología , Regulación hacia Arriba/efectos de los fármacos , Ratas , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Presión Sanguínea/efectos de los fármacos , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos
2.
Am J Physiol Renal Physiol ; 326(5): F814-F826, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545647

RESUMEN

Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.


Asunto(s)
Acuaporina 2 , Proteínas Cullin , Ciclopentanos , Túbulos Renales Colectores , Pirimidinas , Ubiquitinación , Acuaporina 2/metabolismo , Proteínas Cullin/metabolismo , Animales , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/enzimología , Ubiquitinación/efectos de los fármacos , Fosforilación , Ratones , Vasopresinas/metabolismo , Vasopresinas/farmacología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Calcio/metabolismo
3.
J Am Soc Nephrol ; 35(4): 426-440, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38238903

RESUMEN

SIGNIFICANCE STATEMENT: High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND: The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS: To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS: Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS: Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.


Asunto(s)
Calcio , Magnesio , Calcio/metabolismo , Magnesio/metabolismo , Simportadores del Cloruro de Sodio/metabolismo , Transporte Iónico , ARN/análisis , Túbulos Renales Distales/metabolismo
4.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881876

RESUMEN

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo , Animales , Ratones , Furosemida , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
5.
Curr Opin Nephrol Hypertens ; 32(4): 335-343, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070483

RESUMEN

PURPOSE OF REVIEW: Mutations in the E3 ubiquitin ligase scaffold cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt) by hyperactivating the NaCl cotransporter (NCC). The effects of these mutations are complex and still being unraveled. This review discusses recent findings revealing the molecular mechanisms underlying the effects of CUL3 mutations in the kidney. RECENT FINDINGS: The naturally occurring mutations that cause deletion of exon 9 (CUL3-Δ9) from CUL3 generate an abnormal CUL3 protein. CUL3-Δ9 displays increased interaction with multiple ubiquitin ligase substrate adaptors. However, in-vivo data show that the major mechanism for disease pathogenesis is that CUL3-Δ9 promotes degradation of itself and KLHL3, the specific substrate adaptor for an NCC-activating kinase. CUL3-Δ9 displays dysregulation via impaired binding to the CSN and CAND1, which cause hyperneddylation and compromised adaptor exchange, respectively. A recently discovered CUL3 mutant (CUL3-Δ474-477) displays many similarities to CUL3-Δ9 mutations but some key differences that likely account for the milder FHHt phenotype it elicits. Furthermore, recent work suggests that CUL3 mutations could have unidentified complications in patients and/or a predisposition to renal injury. SUMMARY: This review summarizes recent studies highlighting advances in our understanding of the renal mechanisms by which CUL3 mutations modulate blood pressure in FHHt.


Asunto(s)
Hipertensión , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Cullin/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Riñón/metabolismo , Mutación , Hipertensión/genética , Hipertensión/metabolismo
7.
Hypertension ; 80(5): 912-923, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36861484

RESUMEN

The study of rare monogenic forms of hypertension has led to the elucidation of important physiological pathways controlling blood pressure. Mutations in several genes cause familial hyperkalemic hypertension (also known as Gordon syndrome or pseudohypoaldosteronism type II). The most severe form of familial hyperkalemic hypertension is caused by mutations in CUL3, encoding CUL3 (Cullin 3)-a scaffold protein in an E3 ubiquitin ligase complex that tags substrates for proteasomal degradation. In the kidney, CUL3 mutations cause accumulation of the substrate WNK (with-no-lysine [K]) kinase and ultimately hyperactivation of the renal NaCl cotransporter-the target of the first-line antihypertensive thiazide diuretics. The precise mechanisms by which mutant CUL3 causes WNK kinase accumulation have been unclear, but several functional defects are likely to contribute. The hypertension seen in familial hyperkalemic hypertension also results from effects exerted by mutant CUL3 on several pathways in vascular smooth muscle and endothelium that modulate vascular tone. This review summarizes the mechanisms by which wild type and mutant CUL3 modulate blood pressure through effects on the kidney and vasculature, potential effects in the central nervous system and heart, and future directions for investigation.


Asunto(s)
Hipertensión , Seudohipoaldosteronismo , Humanos , Presión Sanguínea/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Cullin/genética , Seudohipoaldosteronismo/genética , Hipertensión/metabolismo
8.
Adv Kidney Dis Health ; 30(2): 137-147, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36868729

RESUMEN

Potassium channels are expressed in virtually all cell types, and their activity is the dominant determinant of cellular membrane potential. As such, potassium flux is a key regulator of many cellular processes including the regulation of action potentials in excitable cells. Subtle changes in extracellular potassium can initiate signaling processes vital for survival (insulin signaling) while more extreme and chronic changes may lead to pathological states (acid-base disturbances and cardiac arrhythmia). While many factors acutely influence extracellular potassium levels, it is principally the role of the kidneys to maintain potassium balance by matching urinary excretion with dietary intake. When this balance is disrupted, human health is negatively impacted. In this review, we discuss evolving views of dietary potassium intake as means of preventing and mitigating diseases. We also provide an update on a molecular pathway called the potassium switch, a mechanism by which extracellular potassium regulates distal nephron sodium reabsorption. Finally, we review recent literature describing how several popular therapeutics influence potassium homeostasis.


Asunto(s)
Riñón , Fenómenos Fisiológicos del Sistema Urinario , Humanos , Potenciales de Acción , Transporte Biológico , Potasio
9.
Am J Physiol Renal Physiol ; 323(5): F564-F576, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007890

RESUMEN

Mutations in the ubiquitin ligase scaffold protein cullin 3 (CUL3) cause the disease familial hyperkalemic hypertension (FHHt). We recently reported that in the kidney, aberrant mutant CUL3 (CUL3-Δ9) activity lowers the abundance of CUL3-Δ9 and Kelch-like 3, the CUL3 substrate adaptor for with-no-lysine kinase 4 (WNK4) and that this is mechanistically important. However, whether CUL3-Δ9 exerts additional effects on other targets that may alter renal function is unclear. Here, we sought to determine 1) whether CUL3-Δ9 expression can rescue the phenotype of renal tubule-specific Cul3 knockout mice, and 2) whether CUL3-Δ9 expression affects other CUL3 substrates. Using an inducible renal tubule-specific system, we studied two CUL3-Δ9-expressing mouse models: Cul3 knockout (Cul3-/-/Δ9) and Cul3 heterozygous background (Cul3+/-/Δ9, FHHt model). The effects of CUL3-Δ9 in these mice were compared with Cul3-/- and Cul3+/- mice. Similar to Cul3-/- mice, Cul3-/-/Δ9 mice displayed polyuria with loss of aquaporin 2 and collecting duct injury; proximal tubule injury also occurred. CUL3-Δ9 did not promote degradation of two CUL3 targets that accumulate in the Cul3-/- kidney: high-molecular-weight (HMW) cyclin E and NAD(P)H:quinone oxidoreductase 1 (NQO1) [a surrogate for the CUL3-Kelch-like ECH-associated protein 1 (KEAP1) substrate nuclear factor erythroid-2-related factor 2]. Since CUL3-Δ9 expression cannot rescue the Cul3-/- phenotype, our data suggest that CUL3-Δ9 cannot normally function in ubiquitin ligase complexes. In Cul3+/-/Δ9 mice, KEAP1 abundance did not differ but NQO1 abundance was higher, suggesting adaptor sequestration by CUL3-Δ9 in vivo. Together, our results provide evidence that in the kidney, CUL3-Δ9 completely lacks normal activity and can trap CUL3 substrate adaptors in inactive complexes.NEW & NOTEWORTHY CUL3 mutation (CUL3-Δ9) causes familial hyperkalemic hypertension (FHHt) by reducing adaptor KLHL3, impairing substrate WNK4 degradation. Whether CUL3-Δ9 affects other targets in kidneys remains unclear. We found that CUL3-Δ9 cannot degrade two CUL3 targets, cyclin E and nuclear factor erythroid-2-related factor 2 (NRF2; using a surrogate marker NQO1), or rescue injury or polyuria caused by Cul3 disruption. In an FHHt model, CUL3-Δ9 impaired NRF2 degradation without reduction of its adaptor KEAP1. Our data provide additional insights into CUL3-Δ9 function in the kidney.


Asunto(s)
Proteínas Cullin , Hipertensión , Riñón , Seudohipoaldosteronismo , Animales , Ratones , Acuaporina 2/metabolismo , Biomarcadores/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Ciclina E/metabolismo , Hipertensión/genética , Hipertensión/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Riñón/fisiopatología , Ratones Noqueados , NAD/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidorreductasas/metabolismo , Poliuria/metabolismo , Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo
10.
Am J Physiol Renal Physiol ; 323(4): F468-F478, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900342

RESUMEN

The renin-angiotensin-aldosterone and arginine vasopressin-V2 receptor-aquaporin-2 (AQP2) systems converge on the epithelial Na+ channel (ENaC) to regulate blood pressure and plasma tonicity. Although it is established that V2 receptors initiate renal water reabsorption through AQP2, whether V2 receptors can also induce renal Na+ retention through ENaC and raise blood pressure remains an open question. We hypothesized that a specific increase in V2 receptor-mediated ENaC activity can lead to high blood pressure. Our approach was to test effects of chronic activation of V2 receptors in Liddle mice, a genetic mouse model of high ENaC activity, and compare differences in ENaC activity, urine Na+ excretion, and blood pressure with control mice. We found that ENaC activity was elevated in Liddle mice and could not be stimulated further by administration of desmopressin (dDAVP), a V2 receptor-specific agonist. In contrast, Liddle mice showed higher levels of expression of AQP2 and aquaporin-3, but they could still respond to dDAVP infusion by increasing phospho-AQP2 expression. With dDAVP infusion, Liddle mice excreted smaller urine volume and less urine Na+ and developed higher blood pressure compared with control mice; this hypertension was attenuated with administration of the ENaC inhibitor benzamil. We conclude that V2 receptors contribute to hypertension in the Liddle mouse model by promoting primary Na+ and concomitant water retention.NEW & NOTEWORTHY Liddle syndrome is a classic model for hypertension from high epithelial Na+ channel (ENaC) activity. In the Liddle mouse model, vasopressin-2 receptors stimulate both ENaC and aquaporin-2, which increases Na+ and water retention to such an extent that hypertension ensues. Liddle mice will preserve plasma tonicity at the expense of a higher blood pressure; these data highlight the inherent limitation in which the kidney must use ENaC as a pathway to regulate both plasma tonicity and blood pressure.


Asunto(s)
Hipertensión , Desequilibrio Hidroelectrolítico , Animales , Acuaporina 2 , Desamino Arginina Vasopresina/farmacología , Canales Epiteliales de Sodio/metabolismo , Ratones , Receptores de Vasopresinas/metabolismo , Sodio/metabolismo , Agua/metabolismo
11.
Hypertension ; 79(7): 1423-1434, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506380

RESUMEN

BACKGROUND: MR (mineralocorticoid receptor) antagonists are recommended for patients with resistant hypertension even when circulating aldosterone levels are not high. Although aldosterone activates MR to increase epithelial sodium channel (ENaC) activity, glucocorticoids also activate MR but are metabolized by 11ßHSD2 (11ß-hydroxysteroid dehydrogenase type 2). 11ßHSD2 is expressed at increasing levels from distal convoluted tubule (DCT) through collecting duct. Here, we hypothesized that MR maintains ENaC activity in the DCT2 and early connecting tubule in the absence of aldosterone. METHODS: We studied AS (aldosterone synthase)-deficient (AS-/-) mice, which were backcrossed onto the same C57BL6/J strain as kidney-specific MR knockout (KS-MR-/-) mice. KS-MR-/- mice were used to compare MR expression and ENaC localization and cleavage with AS-/- mice. RESULTS: MR was highly expressed along DCT2 through the cortical collecting duct (CCD), whereas no 11ßHSD2 expression was observed along DCT2. MR signal and apical ENaC localization were clearly reduced along both DCT2 and CCD in KS-MR-/- mice but were fully preserved along DCT2 and were partially reduced along CCD in AS-/- mice. Apical ENaC localization and ENaC currents were fully preserved along DCT2 in AS-/- mice and were not increased along CCD after low salt. AS-/- mice exhibited transient Na+ wasting under low-salt diet, but administration of the MR antagonist eplerenone to AS-/- mice led to hyperkalemia and decreased body weight with higher Na+ excretion, mimicking the phenotype of MR-/- mice. CONCLUSIONS: Our results provide evidence that MR is activated in the absence of aldosterone along DCT2 and partially CCD, suggesting glucocorticoid binding to MR preserves sodium homeostasis along DCT2 in AS-/- mice.


Asunto(s)
Aldosterona , Túbulos Renales Colectores , Aldosterona/metabolismo , Aldosterona/farmacología , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Humanos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Distales/metabolismo , Ratones , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Natriuresis , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sodio/metabolismo
13.
J Am Soc Nephrol ; 33(3): 584-600, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064051

RESUMEN

BACKGROUND: Mutations in the ubiquitin ligase scaffold protein Cullin 3 (CUL3) gene cause the disease familial hyperkalemic hypertension (FHHt). In the kidney, mutant CUL3 (CUL3-Δ9) increases abundance of With-No-Lysine (K) Kinase 4 (WNK4), inappropriately activating sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK), which then phosphorylates and hyperactivates the Na+Cl- cotransporter (NCC). The precise mechanism by which CUL3-Δ9 causes FHHt is unclear. We tested the hypothesis that reduced abundance of CUL3 and of Kelch-like 3 (KLHL3), the CUL3 substrate adaptor for WNK4, is mechanistically important. Because JAB1, an enzyme that inhibits CUL3 activity by removing the ubiquitin-like protein NEDD8, cannot interact with CUL3-Δ9, we also determined whether Jab1 disruption mimicked the effects of CUL3-Δ9 expression. METHODS: We used an inducible renal tubule-specific system to generate several mouse models expressing CUL3-Δ9, mice heterozygous for both CUL3 and KLHL3 (Cul3+/-/Klhl3+/- ), and mice with short-term Jab1 disruption (to avoid renal injury associated with long-term disruption). RESULTS: Renal KLHL3 was higher in Cul3-/- mice, but lower in Cul3-/-/Δ9 mice and in the Cul3+/-/Δ9 FHHt model, suggesting KLHL3 is a target for both WT and mutant CUL3. Cul3+/-/Klhl3+/- mice displayed increased WNK4-SPAK activation and phospho-NCC abundance and an FHHt-like phenotype with increased plasma [K+] and salt-sensitive blood pressure. Short-term Jab1 disruption in mice lowered the abundance of CUL3 and KLHL3 and increased the abundance of WNK4 and phospho-NCC. CONCLUSIONS: Jab1-/- mice and Cul3+/-/Klhl3+/- mice recapitulated the effects of CUL3-Δ9 expression on WNK4-SPAK-NCC. Our data suggest degradation of both KLHL3 and CUL3 plays a central mechanistic role in CUL3-Δ9-mediated FHHt.


Asunto(s)
Proteínas Cullin , Hipertensión , Seudohipoaldosteronismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Femenino , Humanos , Hipertensión/genética , Masculino , Ratones , Proteínas de Microfilamentos/genética , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
14.
J Am Soc Nephrol ; 32(10): 2579-2594, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341182

RESUMEN

BACKGROUND: Rhabdomyolysis, the destruction of skeletal muscle, is a significant cause of AKI and death in the context of natural disaster and armed conflict. Rhabdomyolysis may also initiate CKD. Development of specific pharmacologic therapy is desirable because supportive care is nearly impossible in austere environments. Myoglobin, the principal cause of rhabdomyolysis-related AKI, undergoes megalin-mediated endocytosis in proximal tubule cells, a process that specifically injures these cells. METHODS: To investigate whether megalin is protective in a mouse model of rhabdomyolysis-induced AKI, we used male C57BL/6 mice and mice (14-32 weeks old) with proximal tubule-specific deletion of megalin. We used a well-characterized rhabdomyolysis model, injection of 50% glycerol in normal saline preceded by water deprivation. RESULTS: Inducible proximal tubule-specific deletion of megalin was highly protective in this mouse model of rhabdomyolysis-induced AKI. The megalin knockout mice demonstrated preserved GFR, reduced proximal tubule injury (as indicated by kidney injury molecule-1), and reduced renal apoptosis 24 hours after injury. These effects were accompanied by increased urinary myoglobin clearance. Unlike littermate controls, the megalin-deficient mice also did not develop progressive GFR decline and persistent new proteinuria. Administration of the pharmacologic megalin inhibitor cilastatin to wild-type mice recapitulated the renoprotective effects of megalin deletion. This cilastatin-mediated renoprotective effect was dependent on megalin. Cilastatin administration caused selective proteinuria and inhibition of tubular myoglobin uptake similar to that caused by megalin deletion. CONCLUSIONS: We conclude that megalin plays a critical role in rhabdomyolysis-induced AKI, and megalin interference and inhibition ameliorate rhabdomyolysis-induced AKI. Further investigation of megalin inhibition may inform translational investigation of a novel potential therapy.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Cilastatina/uso terapéutico , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Mioglobina/metabolismo , Inhibidores de Proteasas/uso terapéutico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Lesión Renal Aguda/fisiopatología , Animales , Apoptosis , Nitrógeno de la Urea Sanguínea , Cilastatina/farmacología , Modelos Animales de Enfermedad , Endocitosis , Tasa de Filtración Glomerular/efectos de los fármacos , Tasa de Filtración Glomerular/genética , Túbulos Renales Proximales/patología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Masculino , Ratones , Ratones Noqueados , Mioglobina/sangre , Mioglobinuria/orina , Inhibidores de Proteasas/farmacología , Rabdomiólisis/complicaciones
15.
Acta Physiol (Oxf) ; 233(1): e13705, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34114742

RESUMEN

AIM: The phosphorylation level of the furosemide-sensitive Na+ -K+ -2Cl- cotransporter (NKCC2) in the thick ascending limb (TAL) is used as a surrogate marker for NKCC2 activation and TAL function. However, in mice, analyses of NKCC2 phosphorylation with antibodies against phosphorylated threonines 96 and 101 (anti-pT96/pT101) give inconsistent results. We aimed (a) to elucidate these inconsistencies and (b) to develop a phosphoform-specific antibody that ensures reliable detection of NKCC2 phosphorylation in mice. METHODS: Genetic information, molecular biology, biochemical techniques and mouse phenotyping was used to study NKCC2 and kidney function in two commonly used mouse strains (ie 129Sv and in C57BL/6 mice). Moreover, a new phosphoform-specific mouse NKCC2 antibody was developed and characterized. RESULTS: Amino acids sequence alignment revealed that C57BL/6 mice have a strain-specific five amino acids deletion (ΔF97-T101) in NKCC2 that diminishes the detection of NKCC2 phosphorylation with previously developed pT96/pT101 NKCC2 antibodies. Instead, the antibodies cross-react with the phosphorylated thiazide-sensitive NaCl cotransporter (NCC), which can obscure interpretation of results. Interestingly, the deletion in NKCC2 does not impact on kidney function and/or expression of renal ion transport proteins as indicated by the analysis of the F2 generation of crossbred 129Sv and C57BL/6 mice. A newly developed pT96 NKCC2 antibody detects pNKCC2 in both mouse strains and shows no cross-reactivity with phosphorylated NCC. CONCLUSION: Our work reveals a hitherto unappreciated, but essential, strain difference in the amino acids sequence of mouse NKCC2 that needs to be considered when analysing NKCC2 phosphorylation in mice. The new pNKCC2 antibody circumvents this technical caveat.


Asunto(s)
Aminoácidos , Simportadores de Cloruro de Sodio-Potasio , Aminoácidos/metabolismo , Animales , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Simportadores de Cloruro de Sodio-Potasio/genética , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
16.
J Am Soc Nephrol ; 32(9): 2125-2136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34045316

RESUMEN

Magnesium is an essential cofactor in many cellular processes, and aberrations in magnesium homeostasis can have life-threatening consequences. The kidney plays a central role in maintaining serum magnesium within a narrow range (0.70-1.10 mmol/L). Along the proximal tubule and thick ascending limb, magnesium reabsorption occurs via paracellular pathways. Members of the claudin family form the magnesium pores in these segments, and also regulate magnesium reabsorption by adjusting the transepithelial voltage that drives it. Along the distal convoluted tubule transcellular reabsorption via heteromeric TRPM6/7 channels predominates, although paracellular reabsorption may also occur. In this segment, the NaCl cotransporter plays a critical role in determining transcellular magnesium reabsorption. Although the general machinery involved in renal magnesium reabsorption has been identified by studying genetic forms of magnesium imbalance, the mechanisms regulating it are poorly understood. This review discusses pathways of renal magnesium reabsorption by different segments of the nephron, emphasizing newer findings that provide insight into regulatory process, and outlining critical unanswered questions.


Asunto(s)
Magnesio/metabolismo , Reabsorción Renal/fisiología , Claudinas/fisiología , Humanos , Nefronas/fisiopatología , Proteínas Serina-Treonina Quinasas/fisiología , Canales Catiónicos TRPM/fisiología
17.
Am J Physiol Renal Physiol ; 320(5): F719-F733, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719576

RESUMEN

Phosphorylation of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) is altered rapidly in response to changes in extracellular K+ concentration ([K+]). High extracellular [K+] is believed to activate specific phosphatases to dephosphorylate NCC, thereby reducing its activity. This process is defective in the human disease familial hyperkalemic hypertension, in which extracellular [K+] fails to dephosphorylate NCC, suggesting an interplay between NCC-activating and NCC-inactivating switches. Here, we explored the role of STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and intracellular Cl- concentration in the rapid effects of extracellular K+ on NCC phosphorylation. SPAK was found to be rapidly dephosphorylated in vitro in human embryonic kidney cells and ex vivo in kidney slices by high [K+]. Acute high-K+ challenge resulted in DCT1-specific SPAK dephosphorylation in vivo and dissolution of SPAK puncta. In line with the postulate of interplay between activating and inactivating switches, we found that the "on" switch, represented by with no lysine kinase 4 (WNK4)-SPAK, must be turned off for rapid NCC dephosphorylation by high [K+]. Longer-term WNK-SPAK-mediated stimulation, however, altered the sensitivity of the system, as it attenuated rapid NCC dephosphorylation due to acute K+ loading. Although blockade of protein phosphatase (PP)1 increased NCC phosphorylation at baseline, neither PP1 nor PP3, singly or in combination, was essential for NCC dephosphorylation. Overall, our data suggest that NCC phosphorylation is regulated by a dynamic equilibrium between activating kinases and inactivating phosphatases, with kinase inactivation playing a key role in the rapid NCC dephosphorylation by high extracellular K+.NEW & NOTEWORTHY Although a great deal is known about mechanisms by which thiazide-sensitive NaCl cotransporter is phosphorylated and activated, much less is known about dephosphorylation. Here, we show that rapid dephosphorylation by high K+ depends on the Cl- sensitivity of with no lysine kinase 4 and the rapid dephosphorylation of STE20/SPS1-related proline-alanine-rich protein kinase, primarily along the early distal convoluted tubule.


Asunto(s)
Cloruros/metabolismo , Túbulos Renales Distales/enzimología , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Células HEK293 , Humanos , Cinética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo
18.
Cells ; 11(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011657

RESUMEN

The thiazide-sensitive sodium chloride cotransporter (NCC) plays a vital role in maintaining sodium (Na+) and potassium (K+) homeostasis. NCC activity is modulated by with-no-lysine kinases 1 and 4 (WNK1 and WNK4), the abundance of which is controlled by the RING-type E3 ligase Cullin 3 (Cul3) and its substrate adapter Kelch-like protein 3. Dietary K+ intake has an inverse correlation with NCC activity, but the mechanism underlying this phenomenon remains to be fully elucidated. Here, we investigated the involvement of other members of the cullin family in mediating K+ effects on NCC phosphorylation (active form) and abundance. In kidneys from mice fed diets varying in K+ content, there were negative correlations between NCC (phosphorylated and total) and active (neddylated) forms of cullins (Cul1, 3, 4, and 5). High dietary K+ effects on phosphorylated NCC were attenuated in Cul3 mutant mice (CUL3-Het/Δ9). Short-term (30 min) and long-term (24 h) alterations in the extracellular K+ concentration did not affect cullin neddylation levels in ex vivo renal tubules. In the short term, the ability of high extracellular K+ to decrease NCC phosphorylation was preserved in the presence of MLN4924 (pan-cullin inhibitor), but the response to low extracellular K+ was absent. In the long term, MLN4924 attenuated the effects of high extracellular K+ on NCC phosphorylation, and responses to low extracellular K+ were absent. Our data suggest that in addition to Cul3, other cullins are involved in mediating the effects of K+ on NCC phosphorylation and abundance.


Asunto(s)
Proteínas Cullin/metabolismo , Potasio/farmacología , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ciclopentanos/farmacología , Suplementos Dietéticos , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Pirimidinas/farmacología
19.
Cardiovasc Res ; 117(1): 308-319, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428209

RESUMEN

AIMS: Salt-sensitive (SS) hypertension is accompanied by impaired vasodilation in the systemic and renal circulation. However, the causal relationship between vascular dysfunction and salt-induced hypertension remains controversial. We sought to determine whether primary vascular dysfunction, characterized by a failure to vasodilate during salt loading, plays a causal role in the pathogenesis of SS hypertension. METHODS AND RESULTS: Mice selectively expressing a peroxisome proliferator-activated receptor γ dominant-negative mutation in vascular smooth muscle (S-P467L) exhibited progressive SS hypertension during a 4 week high salt diet (HSD). This was associated with severely impaired vasodilation in systemic and renal vessels. Salt-induced impairment of vasodilation occurred as early as 3 days after HSD, which preceded the onset of SS hypertension. Notably, the overt salt-induced hypertension in S-P467L mice was not driven by higher cardiac output, implying elevations in peripheral vascular resistance. In keeping with this, HSD-fed S-P467L mice exhibited decreased smooth muscle responsiveness to nitric oxide (NO) in systemic vessels. HSD-fed S-P467L mice also exhibited elevated albuminuria and a blunted increase in urinary NO metabolites which was associated with blunted renal blood flow and increased sodium retention mediated by a lack of HSD-induced suppression of NKCC2. Blocking NKCC2 function prevented the salt-induced increase in blood pressure in S-P467L mice. CONCLUSION: We conclude that failure to vasodilate in response to salt loading causes SS hypertension by restricting renal perfusion and reducing renal NO through a mechanism involving NKCC2 in a mouse model of vascular peroxisome proliferator-activated receptor γ impairment.


Asunto(s)
Presión Sanguínea , Hipertensión/fisiopatología , Riñón/irrigación sanguínea , Músculo Liso Vascular/fisiopatología , Circulación Renal , Vasodilatación , Animales , Arterias Carótidas/metabolismo , Arterias Carótidas/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/etiología , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Mutación , Óxido Nítrico/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Arteria Renal/metabolismo , Arteria Renal/fisiopatología , Cloruro de Sodio Dietético , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
20.
Am J Physiol Renal Physiol ; 319(6): F1043-F1053, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135481

RESUMEN

The genetic disease Gitelman syndrome, knockout mice, and pharmacological blockade with thiazide diuretics have revealed that reduced activity of the NaCl cotransporter (NCC) promotes renal Mg2+ wasting. NCC is expressed along the distal convoluted tubule (DCT), and its activity determines Mg2+ entry into DCT cells through transient receptor potential channel subfamily M member 6 (TRPM6). Several other genetic forms of hypomagnesemia lower the drive for Mg2+ entry by inhibiting activity of basolateral Na+-K+-ATPase, and reduced NCC activity may do the same. Lower intracellular Mg2+ may promote further Mg2+ loss by directly decreasing activity of Na+-K+-ATPase. Lower intracellular Mg2+ may also lower Na+-K+-ATPase indirectly by downregulating NCC. Lower NCC activity also induces atrophy of DCT cells, decreasing the available number of TRPM6 channels. Conversely, a mouse model with increased NCC activity was recently shown to display normal Mg2+ handling. Moreover, recent studies have identified calcineurin and uromodulin (UMOD) as regulators of both NCC and Mg2+ handling by the DCT. Calcineurin inhibitors paradoxically cause hypomagnesemia in a state of NCC activation, but this may be related to direct effects on TRPM6 gene expression. In Umod-/- mice, the cause of hypomagnesemia may be partly due to both decreased NCC expression and lower TRPM6 expression on the cell surface. This mini-review discusses these new findings and the possible role of altered Na+ flux through NCC and ultimately Na+-K+-ATPase in Mg2+ reabsorption by the DCT.


Asunto(s)
Síndrome de Gitelman/metabolismo , Túbulos Renales Distales/metabolismo , Magnesio/metabolismo , Eliminación Renal , Reabsorción Renal , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Calcineurina/metabolismo , Síndrome de Gitelman/genética , Síndrome de Gitelman/fisiopatología , Humanos , Túbulos Renales Distales/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Canales Catiónicos TRPM/metabolismo , Uromodulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA