Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 63(16): E1-E9, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856586

RESUMEN

Two-wavelength adaptive optics (AO), where sensing and correcting (from a beacon) are performed at one wavelength λ B and compensation and observation (after transmission through the atmosphere) are performed at another λ T , has historically been analyzed and practiced assuming negligible irradiance fluctuations (i.e., weak scintillation). Under these conditions, the phase corrections measured at λ B are robust over a relatively large range of wavelengths, resulting in a negligible decrease in AO performance. In weak-to-moderate scintillation conditions, which result from distributed-volume atmospheric aberrations, the pupil-phase function becomes discontinuous, producing what Fried called the "hidden phase" because it is not sensed by traditional least-squares phase reconstructors or unwrappers. Neglecting the hidden phase has a significant negative impact on AO performance even with perfect least-squares phase compensation. To the authors' knowledge, the hidden phase has not been studied in the context of two-wavelength AO. In particular, how does the hidden phase sensed at λ B relate to the compensation (or observation) wavelength λ T ? If the hidden phase is highly correlated across λ B and λ T , like the least-squares phase, it is worth sensing and correcting; otherwise, it is not. Through a series of wave optics simulations, we find an approximate expression for the hidden-phase correlation coefficient as a function of λ B , λ T , and the scintillation strength. In contrast to the least-squares phase, we determine that the hidden phase (when present) is correlated over a small band of wavelengths centered on λ T . Over the range λ B ,λ T ∈[1,3]µm and in weak-to-moderate scintillation conditions (spherical-wave log-amplitude variance σ χ2∈[0.1,0.5]), we find the average hidden-phase correlation linewidth to be approximately 0.35 µm. Consequently, for |λ B -λ T | greater than this linewidth, including the hidden phase does not significantly improve AO performance over least-squares phase compensation.

2.
Appl Opt ; 63(16): E64-E77, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856593

RESUMEN

The atmosphere's surface layer (first 50-100 m above the ground) is extremely dynamic and is influenced by surface radiative properties, roughness, and atmospheric stability. Understanding the distribution of turbulence in the surface layer is critical to many applications, such as directed energy and free space optical communications. Several measurement campaigns in the past have relied on weather balloons or sonic detection and ranging (SODAR) to measure turbulence up to the atmospheric boundary layer. However, these campaigns had limited measurements near the surface. We have developed a time-lapse imaging technique to profile atmospheric turbulence from turbulence-induced differential motion or tilts between features on a distant target, sensed between pairs of cameras in a camera bank. This is a low-cost and portable approach to remotely sense turbulence from a single site without the deployment of sensors at the target location. It is thus an excellent approach to study the distribution of turbulence in low altitudes with sufficiently high resolution. In the present work, the potential of this technique was demonstrated. We tested the method over a path with constant turbulence. We explored the turbulence distribution with height in the first 20 m above the ground by imaging a 30 m water tower over a flat terrain on three clear days in summer. In addition, we analyzed time-lapse data from a second water tower over a sloped terrain. In most of the turbulence profiles extracted from these images, the drop in turbulence with altitude in the first 15 m or so above the ground showed a h m dependence, where the exponent m varied from -0.3 to -1.0, quite contrary to the widely used value of -4/3.

3.
Appl Opt ; 60(3): 606-615, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33690441

RESUMEN

A dynamically ranged pulsed Rayleigh beacon using sensed wavefronts across a system's pupil plane is proposed for tomographic quantification of the atmospheric turbulence strength. This method relies on relaying light from a telescope system's pupil plane to a wavefront sensor and having precise control of the light-blocking mechanisms to filter out scattered light from the unwanted scattering regions along the propagation path. To accomplish this, we tested and incorporated design features into the sensing system that we believe, to the best of our knowledge, are unique. Dynamically changing the range of the beacon source created focal shifts along the optical axis in the telescope sensing system. This effect induced polarization degradation in the optical pupil. As a result, polarization nonuniformity within the Pockels cell resulted in light leakages that corrupted the sensed data signals. To mitigate this unwanted effect, an analysis of the polarization pupil had to be completed for the range of possible Rayleigh beacon source distances, relating the change in polarization to the ability of a Pockels cell to function as an optical shutter. Based on the resultant polarization pupil analysis, careful design of the light relay architecture of the sensing system was necessary to properly capture sensed wavefront data from a series of intended ranges. Results are presented for the engineering design of the Turbulence and Aerosol Research Dynamic Interrogation System sensing system showing the choices made within the trade space and how those choices were made based on an analysis of the polarization pupil. Based on what we learned, recommendations are made to effectively implement a polarization-based Pockels cell shutter system as part of a dynamically ranged Rayleigh beacon system.

4.
Appl Opt ; 57(15): 4090-4102, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29791382

RESUMEN

Polychromatic laser light can reduce speckle noise in wavefront-sensing and imaging applications that use direct-detection schemes. To help quantify the achievable reduction in speckle, this paper investigates the accuracy and numerical efficiency of three separate wave-optics methods. Each method simulates the active illumination of extended objects with polychromatic laser light. In turn, this paper uses the Monte Carlo method, the depth-slicing method, and the spectral-slicing method, respectively, to simulate the laser-object interaction. The limitations and sampling requirements of all three methods are discussed. Further, the numerical efficiencies of the methods are compared over a range of conditions. The Monte Carlo method is found to be the most efficient, while spectral slicing is more efficient than depth slicing for well-resolved objects. Finally, Hu's theory is used to quantify method accuracy when possible (i.e., for well-resolved objects). In general, the theory compares favorably to the simulation methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...