Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(21): 5373-5377, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28416657

RESUMEN

The growth in global methane (CH4) concentration, which had been ongoing since the industrial revolution, stalled around the year 2000 before resuming globally in 2007. We evaluate the role of the hydroxyl radical (OH), the major CH4 sink, in the recent CH4 growth. We also examine the influence of systematic uncertainties in OH concentrations on CH4 emissions inferred from atmospheric observations. We use observations of 1,1,1-trichloroethane (CH3CCl3), which is lost primarily through reaction with OH, to estimate OH levels as well as CH3CC3 emissions, which have uncertainty that previously limited the accuracy of OH estimates. We find a 64-70% probability that a decline in OH has contributed to the post-2007 methane rise. Our median solution suggests that CH4 emissions increased relatively steadily during the late 1990s and early 2000s, after which growth was more modest. This solution obviates the need for a sudden statistically significant change in total CH4 emissions around the year 2007 to explain the atmospheric observations and can explain some of the decline in the atmospheric 13CH4/12CH4 ratio and the recent growth in C2H6 Our approach indicates that significant OH-related uncertainties in the CH4 budget remain, and we find that it is not possible to implicate, with a high degree of confidence, rapid global CH4 emissions changes as the primary driver of recent trends when our inferred OH trends and these uncertainties are considered.

2.
J Geophys Res Atmos ; 122(21): 11914-11933, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38515436

RESUMEN

An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH3CCl3) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH2F2), HFC-134a (CH2FCF3, HFC-152a (CH3CHF2), and HCFC-22 (CHClF2), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.

3.
Nature ; 433(7025): 506-8, 2005 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-15690037

RESUMEN

Methyl chloroform (CH3CCl3, 1,1,1,-trichloroethane) was used widely as a solvent before it was recognized to be an ozone-depleting substance and its phase-out was introduced under the Montreal Protocol. Subsequently, its atmospheric concentration has declined steadily and recent European methyl chloroform consumption and emissions were estimated to be less than 0.1 gigagrams per year. However, data from a short-term tropospheric measurement campaign (EXPORT) indicated that European methyl chloroform emissions could have been over 20 gigagrams in 2000 (ref. 6), almost doubling previously estimated global emissions. Such enhanced emissions would significantly affect results from the CH3CC13 method of deriving global abundances of hydroxyl radicals (OH) (refs 7-12)-the dominant reactive atmospheric chemical for removing trace gases related to air pollution, ozone depletion and the greenhouse effect. Here we use long-term, high-frequency data from Mace Head, Ireland and Jungfraujoch, Switzerland, to infer European methyl chloroform emissions. We find that European emission estimates declined from about 60 gigagrams per year in the mid-1990s to 0.3-1.4 and 1.9-3.4 gigagrams per year in 2000-03, based on Mace Head and Jungfraujoch data, respectively. Our European methyl chloroform emission estimates are therefore higher than calculated from consumption data, but are considerably lower than those derived from the EXPORT campaign in 2000 (ref. 6).


Asunto(s)
Atmósfera/química , Contaminantes Ambientales/análisis , Tricloroetanos/análisis , Europa (Continente) , Cooperación Internacional , Factores de Tiempo , Tricloroetanos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...