Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333364

RESUMEN

Rapid, simple, and low-cost diagnostic technologies are crucial tools for combatting infectious disease. Here, we describe a class of aptamer-based RNA switches called aptaswitches that recognize specific target nucleic acid molecules and respond by initiating folding of a reporter aptamer. Aptaswitches can detect virtually any sequence and provide a fast and intense fluorescent readout, generating signals in as little as 5 minutes and enabling detection by eye with minimal equipment. We demonstrate that aptaswitches can be used to regulate folding of six different fluorescent aptamer/fluorogen pairs, providing a general means of controlling aptamer activity and an array of different reporter colors for multiplexing. By coupling isothermal amplification reactions with aptaswitches, we reach sensitivities down to 1 RNA copy/µL in one-pot reactions. Application of multiplexed one-pot reactions against RNA extracted from clinical saliva samples yields an overall accuracy of 96.67% for detection of SARS-CoV-2 in 30 minutes. Aptaswitches are thus versatile tools for nucleic acid detection that can be readily integrated into rapid diagnostic assays.

2.
Methods Mol Biol ; 2518: 49-64, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35666438

RESUMEN

The toehold switch is an RNA-based riboregulator that activates translation in response to a cognate trigger RNA and provides high ON/OFF ratios, excellent orthogonality, and logic capabilities. Riboregulators that provide the inverse function - turning off translation in response to a trigger RNA - are also versatile tools for sensing and efficiently implementing logic gates such as NAND or NOR. Toehold and three-way junction (3WJ) repressors are two de novo designed translational repressors devised to provide NOT functions with an easily programmable and intuitive structural design. Toehold and 3WJ repressors repress translation upon binding to cognate trigger RNAs by forming strong hairpin and three-way junction structures, respectively. These two translational repressors can be incorporated into multi-input NAND and NOR gates. This chapter provides methods for designing these translational repressors and protocols for in vivo characterization in E. coli.


Asunto(s)
Escherichia coli , ARN , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Lógica , ARN/química , Factores de Transcripción/metabolismo
3.
Methods Mol Biol ; 2518: 65-86, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35666439

RESUMEN

The ability to control cell function is a critical goal for synthetic biology and motivates the development of ever-improving methods for precise regulation of gene expression. RNA-based systems represent powerful tools for this purpose since they can take full advantage of the predictable and programmable base pairing properties of RNA to control gene expression. This chapter is focused on the computational design of RNA-only biological circuits that can execute complex Boolean logic expressions in living cells. These ribocomputing devices use toehold switches as building blocks for circuit construction, integrating sensing, computation, and signal generation functions within a gate RNA transcript that regulates expression of a gene of interest. The gate RNA in turn assesses the assembly state of networks of interacting input RNAs to execute AND, OR, and NOT operations with high dynamic range in E. coli. Harnessing in silico tools for device design facilitates scaling of the circuits to complex logic expressions, including four-input AND, six-input OR, and disjunctive normal form expressions with up to 12 inputs. This molecular architecture provides an intuitive and modular strategy for devising logic systems that can be readily engineered using RNA sequence design software and applied in vivo and in vitro. In this chapter, we describe the process for designing ribocomputing devices from the generation of orthogonal toehold switch libraries through to their use as building blocks for AND, OR, and NOT circuitry.


Asunto(s)
Escherichia coli , Lógica , Emparejamiento Base , Escherichia coli/genética , Escherichia coli/metabolismo , ARN/genética , ARN/metabolismo , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA