Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Virol ; 161(1): 181-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26497177

RESUMEN

A higher human immunodeficiency virus 1 (HIV-1) viral load at pleural sites infected with Mycobacterium tuberculosis (MTB) than in peripheral blood has been documented. However, the cellular source of productive HIV infection in HIV-1/MTB-coinfected pleural fluid mononuclear cells (PFMCs) remains unclear. In this study, we observed significant quantities of HIV-1 p24(+) lymphocytes in PFMCs, but not in peripheral blood mononuclear cells (PBMCs). HIV-1 p24(+) lymphocytes were mostly enriched in DN T cells. Intracellular CD4 expression was detectable in HIV-1 p24(+) DN T cells. HIV-1 p24(+) DN T cells showed lower surface expression of human leukocyte antigen (HLA)-ABC and tetherin than did HIV-1 p24(+) CD4 T cells. Upon in vitro infection of PFMC CD4 T cells from TB mono-infected subjects, Nef- and/or Vpu-deleted HIV mutants showed lower generation of HIV-1 p24(+) DN T cells than the wild-type virus. These data indicate that productively HIV-1-infected DN T cells, generated through down-modulation of surface CD4, likely by HIV-1 Nef and Vpu, are the predominant source of HIV-1 at pleural sites of HIV/MTB coinfection.


Asunto(s)
Coinfección/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Mycobacterium tuberculosis/fisiología , Pleura/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Adulto , Coinfección/microbiología , Coinfección/virología , Femenino , Infecciones por VIH/microbiología , Infecciones por VIH/virología , Humanos , Masculino , Tuberculosis/microbiología , Adulto Joven
2.
J Immunol ; 195(3): 1044-53, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109643

RESUMEN

Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected cells.


Asunto(s)
Exosomas/metabolismo , Macrófagos Alveolares/inmunología , Mycobacterium tuberculosis/inmunología , Vesículas Secretoras/inmunología , Tuberculosis Pulmonar/inmunología , Animales , Células Cultivadas , Exosomas/inmunología , Lipopolisacáridos/inmunología , Lipoproteínas/inmunología , Pulmón/citología , Pulmón/inmunología , Macrófagos Alveolares/microbiología , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 2/metabolismo , Tuberculosis Pulmonar/microbiología
3.
J Virol ; 88(9): 4976-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24554663

RESUMEN

UNLABELLED: CD4(+) and CD8(+) memory T cells with stem cell-like properties (T(SCM) cells) have been identified in mice, humans, and nonhuman primates and are being investigated for antitumor and antiviral vaccines and immunotherapies. Whether CD4(+) T(SCM) cells are infected by human immunodeficiency virus (HIV) was investigated by using a combination HIV reporter virus system in vitro and by direct staining for HIV p24 antigen ex vivo. A proportion of T(SCM) cells were found to express the HIV coreceptors CCR5 and CXCR4 and were infected by HIV both in vitro and in vivo. Analysis of viral outcome following fusion using the combination reporter virus system revealed that T(SCM) cells can become productively or latently infected, although the vast majority of T(SCM) cells are abortively infected. Knockdown of the HIV restriction factor SAMHD1 using Vpx-containing simian immunodeficiency virus (SIV) virion-like particles enhanced the productive infection of T(SCM) cells, indicating that SAMHD1 contributes to abortive infection in these cells. These results demonstrate that CD4(+) T(SCM) cells are targets for HIV infection, that they become productively or latently infected at low levels, and that SAMHD1 expression promotes abortive infection of this important memory cell subset. IMPORTANCE: Here we demonstrate the susceptibility of CD4(+) memory stem cells (T(SCM) cells) to infection by HIV in vitro and in vivo, provide an in-depth analysis of coreceptor expression, demonstrate the infection of naïve and memory CD4(+) T cell subsets with both CCR5- and CXCR4-tropic HIV, and also perform outcome analysis to calculate the percentage of cells that are productively, latently, or abortively infected. Through these outcome studies, we determined that the vast majority of T(SCM) cells are abortively infected by HIV, and we demonstrate that knockdown of SAMHD1 significantly increases the frequency of infection of this CD4(+) T cell subset, indicating that SAMHD1 is an active restriction factor in T(SCM) cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , VIH-1/crecimiento & desarrollo , Proteínas de Unión al GTP Monoméricas/inmunología , Proteínas de Unión al GTP Monoméricas/metabolismo , Células Madre/virología , Expresión Génica , Voluntarios Sanos , Humanos , Receptores CCR5/biosíntesis , Receptores CXCR4/biosíntesis , Receptores del VIH/biosíntesis , Proteína 1 que Contiene Dominios SAM y HD
4.
PLoS One ; 8(11): e80938, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282561

RESUMEN

Tuberculosis (TB) is the leading cause of mortality among those infected with human immunodeficiency virus (HIV-1) worldwide. HIV-1 load and heterogeneity are increased both locally and systemically in active TB. Mycobacterium tuberculosis (MTB) infection supports HIV-1 replication through dysregulation of host cytokines, chemokines, and their receptors. However the possibility that mycobacterial molecules released from MTB infected macrophages directly interact with CD4(+) T cells triggering HIV-1 replication has not been fully explored. We studied the direct effect of different MTB molecules on HIV-1 replication (R5-tropic strain Bal) in anti-CD3- stimulated CD4(+) T cells from healthy donors in an antigen presenting cell (APC)-free system. PIM6, a major glycolipid of the mycobacterial cell wall, induced significant increases in the percent of HIV-1 infected T cells and the viral production in culture supernatants. In spite of structural relatedness, none of the other three major MTB cell wall glycolipids had significant impact on HIV-1 replication in T cells. Increased levels of IFN-γ in culture supernatants from cells treated with PIM6 indicate that HIV-1 replication is likely dependent on enhanced T cell activation. In HEK293 cells transfected with TLR2, PIM6 was the strongest TLR2 agonist among the cell wall associated glycolipids tested. PIM6 increased the percentage of HIV infected cells and viral particles in the supernatant in a T-cell-based reporter cell line (JLTRg-R5) transfected with TLR1 and TLR2 but not in the cells transfected with the empty vector (which lack TLR2 expression) confirming that PIM6-induced HIV-1 replication depends at least partially on TLR2 signaling.


Asunto(s)
Antígenos Bacterianos/fisiología , Linfocitos T CD4-Positivos/virología , VIH-1/fisiología , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositoles/fisiología , Receptores de Antígenos de Linfocitos T/fisiología , Replicación Viral/fisiología , Humanos , Células Jurkat , Receptor Toll-Like 2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...