Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1051602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936756

RESUMEN

Introduction: As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods: We pursued a binary approach to inhibit proteolysis; we first investigated ß-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II ß-turn, and that published 1,2,3-triazole compounds mimic the ß-turn. Generic covalent molecule libraries and a ß-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results: The ß-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion: This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteolisis , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Mutación , Antibacterianos/farmacología
2.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736210

RESUMEN

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Asunto(s)
Escherichia coli , Mutágenos , Rec A Recombinasas , ADN Polimerasa Dirigida por ADN/metabolismo , Escherichia coli/metabolismo , Filogenia , Rec A Recombinasas/metabolismo
3.
Front Mol Biosci ; 8: 778400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805283

RESUMEN

Y-family DNA polymerases (pols) consist of six phylogenetically separate subfamilies; two UmuC (polV) branches, DinB (pol IV, Dpo4, polκ), Rad30A/POLH (polη), and Rad30B/POLI (polι) and Rev1. Of these subfamilies, DinB orthologs are found in all three domains of life; eubacteria, archaea, and eukarya. UmuC orthologs are identified only in bacteria, whilst Rev1 and Rad30A/B orthologs are only detected in eukaryotes. Within eukaryotes, a wide array of evolutionary diversity exists. Humans possess all four Y-family pols (pols η, ι, κ, and Rev1), Schizosaccharomyces pombe has three Y-family pols (pols η, κ, and Rev1), and Saccharomyces cerevisiae only has polη and Rev1. Here, we report the cloning, expression, and biochemical characterization of the four Y-family pols from the lower eukaryotic thermophilic fungi, Thermomyces lanuginosus. Apart from the expected increased thermostability of the T. lanuginosus Y-family pols, their major biochemical properties are very similar to properties of their human counterparts. In particular, both Rad30B homologs (T. lanuginosus and human polÉ©) exhibit remarkably low fidelity during DNA synthesis that is template sequence dependent. It was previously hypothesized that higher organisms had acquired this property during eukaryotic evolution, but these observations imply that polι originated earlier than previously known, suggesting a critical cellular function in both lower and higher eukaryotes.

4.
Mol Microbiol ; 116(3): 877-889, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34184328

RESUMEN

When subcloned into low-copy-number expression vectors, rumAB, encoding polVR391 (RumA'2 B), is best characterized as a potent mutator giving rise to high levels of spontaneous mutagenesis in vivo. This is in dramatic contrast to the poorly mutable phenotype when polVR391 is expressed from the native 88.5 kb R391, suggesting that R391 expresses cis-acting factors that suppress the expression and/or the activity of polVR391 . Indeed, we recently discovered that SetRR391 , an ortholog of λ cI repressor, is a transcriptional repressor of rumAB. Here, we report that CroSR391 , an ortholog of λ Cro, also serves as a potent transcriptional repressor of rumAB. Levels of RumA are dependent upon an interplay between SetRR391 and CroSR391 , with the greatest reduction of RumA protein levels observed in the absence of SetRR391 and the presence of CroSR391 . Under these conditions, CroSR391 completely abolishes the high levels of mutagenesis promoted by polVR391 expressed from low-copy-number plasmids. Furthermore, deletion of croSR391 on the native R391 results in a dramatic increase in mutagenesis, indicating that CroSR391 plays a major role in suppressing polVR391 mutagenesis in vivo. Inactivating mutations in CroSR391 therefore have the distinct possibility of increasing cellular mutagenesis that could lead to the evolution of antibiotic resistance of pathogenic bacteria harboring R391.


Asunto(s)
Bacteriófago lambda/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virología , Metiltransferasas/metabolismo , Mutagénesis , Proteínas Represoras/fisiología , Proteínas Reguladoras y Accesorias Virales/fisiología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Respuesta SOS en Genética , Eliminación de Secuencia
5.
Mol Microbiol ; 116(3): 909-925, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34181784

RESUMEN

The Escherichia coli dnaE gene encodes the α-catalytic subunit (pol IIIα) of DNA polymerase III, the cell's main replicase. Like all high-fidelity DNA polymerases, pol III possesses stringent base and sugar discrimination. The latter is mediated by a so-called "steric gate" residue in the active site of the polymerase that physically clashes with the 2'-OH of an incoming ribonucleotide. Our structural modeling data suggest that H760 is the steric gate residue in E.coli pol IIIα. To understand how H760 and the adjacent S759 residue help maintain genome stability, we generated DNA fragments in which the codons for H760 or S759 were systematically changed to the other nineteen naturally occurring amino acids and attempted to clone them into a plasmid expressing pol III core (α-θ-ε subunits). Of the possible 38 mutants, only nine were successfully sub-cloned: three with substitutions at H760 and 6 with substitutions at S759. Three of the plasmid-encoded alleles, S759C, S759N, and S759T, exhibited mild to moderate mutator activity and were moved onto the chromosome for further characterization. These studies revealed altered phenotypes regarding deoxyribonucleotide base selectivity and ribonucleotide discrimination. We believe that these are the first dnaE mutants with such phenotypes to be reported in the literature.


Asunto(s)
Dominio Catalítico , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN/química , ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Alelos , Sustitución de Aminoácidos , Reparación de la Incompatibilidad de ADN , ADN Polimerasa III/metabolismo , Replicación del ADN , Desoxirribonucleótidos/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Inestabilidad Genómica , Modelos Moleculares , Mutación , Fenotipo , Ribonucleótidos/química
6.
Ground Water ; 59(5): 694-709, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33655488

RESUMEN

High transmissivity aquifers typically have low hydraulic gradients (i.e., a flat water table). Measuring low gradients using water levels can be problematic because measurement error may be greater than the true difference in water levels (i.e., a low signal-to-noise ratio). In this study, the feasibility of measuring a hydraulic gradient in the range of 10-6 to 10-5  m/m was demonstrated. The study was performed at a site where the depth to water from land surface ranged from 40.1 to 94.2 m and the aquifer transmissivity was estimated at 41,300 m2 /d (hydraulic conductivity of 18,800 m/d). The goals of the study were to reduce measurement error as much as practicable and assess the importance of factors affecting water level measurement accuracy. Well verticality was the largest source of error (0.000 to 0.168 m; median of 0.014 m), and geodetic survey of casing elevations was the next most important source of error (0.002 to 0.013 m; median of 0.005 m). Variability due to barometric pressure fluctuations was not an important factor at the site. Hydraulic heads were measured to an accuracy of ±0.0065 m, and the average hydraulic gradient was estimated to be 8.0 × 10-6 (±0.9 × 10-6 ) m/m. The improvement in accuracy allowed for two reversals in the groundwater flow direction to be identified, after which the gradient averaged 2.5 × 10-5 (±0.4 × 10-5 ) m/m. This study showed it is possible to sufficiently control sources of error to measure hydraulic gradients in the 10-6 to 10-5  m/m range.


Asunto(s)
Agua Subterránea , Conductividad Eléctrica , Movimientos del Agua
8.
Nucleic Acids Res ; 48(15): 8490-8508, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32687193

RESUMEN

Several functions have been proposed for the Escherichia coli DNA polymerase IV (pol IV). Although much research has focused on a potential role for pol IV in assisting pol III replisomes in the bypass of lesions, pol IV is rarely found at the replication fork in vivo. Pol IV is expressed at increased levels in E. coli cells exposed to exogenous DNA damaging agents, including many commonly used antibiotics. Here we present live-cell single-molecule microscopy measurements indicating that double-strand breaks induced by antibiotics strongly stimulate pol IV activity. Exposure to the antibiotics ciprofloxacin and trimethoprim leads to the formation of double strand breaks in E. coli cells. RecA and pol IV foci increase after treatment and exhibit strong colocalization. The induction of the SOS response, the appearance of RecA foci, the appearance of pol IV foci and RecA-pol IV colocalization are all dependent on RecB function. The positioning of pol IV foci likely reflects a physical interaction with the RecA* nucleoprotein filaments that has been detected previously in vitro. Our observations provide an in vivo substantiation of a direct role for pol IV in double strand break repair in cells treated with double strand break-inducing antibiotics.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , ADN Polimerasa beta/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Exodesoxirribonucleasa V/ultraestructura , Rec A Recombinasas/genética , Ciprofloxacina/farmacología , Daño del ADN/efectos de los fármacos , ADN Polimerasa beta/genética , Reparación del ADN/genética , Replicación del ADN/genética , Escherichia coli/genética , Escherichia coli/ultraestructura , Exodesoxirribonucleasa V/genética , Imagen Individual de Molécula
9.
DNA Repair (Amst) ; 84: 102685, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31543434

RESUMEN

pol VICE391 (RumA'2B) is a low-fidelity polymerase that promotes considerably higher levels of spontaneous "SOS-induced" mutagenesis than the related E. coli pol V (UmuD'2C). The molecular basis for the enhanced mutagenesis was previously unknown. Using single molecule fluorescence microscopy to visualize pol V enzymes, we discovered that the elevated levels of mutagenesis are likely due, in part, to prolonged binding of RumB to genomic DNA leading to increased levels of DNA synthesis compared to UmuC. We have generated a steric gate pol VICE391 variant (pol VICE391_Y13A) that readily misincorporates ribonucleotides into the E. coli genome and have used the enzyme to investigate the molecular mechanisms of Ribonucleotide Excision Repair (RER) under conditions of increased ribonucleotide-induced stress. To do so, we compared the extent of spontaneous mutagenesis promoted by pol V and pol VICE391 to that of their respective steric gate variants. Levels of mutagenesis promoted by the steric gate variants that are lower than that of the wild-type enzyme are indicative of active RER that removes misincorporated ribonucleotides, but also misincorporated deoxyribonucleotides from the genome. Using such an approach, we confirmed that RNase HII plays a pivotal role in RER. In the absence of RNase HII, Nucleotide Excision Repair (NER) proteins help remove misincorporated ribonucleotides. However, significant RER occurs in the absence of RNase HII and NER. Most of the RNase HII and NER-independent RER occurs on the lagging strand during genome duplication. We suggest that this is most likely due to efficient RNase HI-dependent RER which recognizes the polyribonucleotide tracts generated by pol VICE391_Y13A. These activities are critical for the maintenance of genomic integrity when RNase HII is overwhelmed, or inactivated, as ΔrnhB or ΔrnhB ΔuvrA strains expressing pol VICE391_Y13A exhibit genome and plasmid instability in the absence of RNase HI.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Inestabilidad Genómica , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación , Dominios Proteicos , Ribonucleótidos/genética , Ribonucleótidos/metabolismo
10.
Nucleic Acids Res ; 47(5): 2425-2435, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30597049

RESUMEN

DNA polymerase η (pol η) is best known for its ability to bypass UV-induced thymine-thymine (T-T) dimers and other bulky DNA lesions, but pol η also has other cellular roles. Here, we present evidence that pol η competes with DNA polymerases α and δ for the synthesis of the lagging strand genome-wide, where it also shows a preference for T-T in the DNA template. Moreover, we found that the C-terminus of pol η, which contains a PCNA-Interacting Protein motif is required for pol η to function in lagging strand synthesis. Finally, we provide evidence that a pol η dependent signature is also found to be lagging strand specific in patients with skin cancer. Taken together, these findings provide insight into the physiological role of DNA synthesis by pol η and have implications for our understanding of how our genome is replicated to avoid mutagenesis, genome instability and cancer.


Asunto(s)
Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Dímeros de Pirimidina/genética , Daño del ADN/genética , ADN Polimerasa I/genética , ADN Polimerasa III/genética , Reparación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Mutagénesis , Saccharomyces cerevisiae/genética
11.
DNA Repair (Amst) ; 73: 99-109, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30581075

RESUMEN

The integrating conjugative element ICE391 (formerly known as IncJ R391) harbors an error-prone DNA polymerase V ortholog, polVICE391, encoded by the ICE391 rumAB operon. polV and its orthologs have previously been shown to be major contributors to spontaneous and DNA damage-induced mutagenesis in vivo. As a result, multiple levels of regulation are imposed on the polymerases so as to avoid aberrant mutagenesis. We report here, that the mutagenesis-promoting activity of polVICE391 is additionally regulated by a transcriptional repressor encoded by SetRICE391, since Escherichia coli expressing SetRICE391 demonstrated reduced levels of polVICE391-mediated spontaneous mutagenesis relative to cells lacking SetRICE391. SetRICE391 regulation was shown to be specific for the rumAB operon and in vitro studies with highly purified SetRICE391 revealed that under alkaline conditions, as well as in the presence of activated RecA, SetRICE391 undergoes a self-mediated cleavage reaction that inactivates repressor functions. Conversely, a non-cleavable SetRICE391 mutant capable of maintaining repressor activity, even in the presence of activated RecA, exhibited low levels of polVICE391-dependent mutagenesis. Electrophoretic mobility shift assays revealed that SetRICE391 acts as a transcriptional repressor by binding to a site overlapping the -35 region of the rumAB operon promoter. Our study therefore provides evidence indicating that SetRICE391 acts as a transcriptional repressor of the ICE391-encoded mutagenic response.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Operón/genética , Transcripción Genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Respuesta SOS en Genética/genética , Serina Endopeptidasas/metabolismo
12.
PLoS Genet ; 14(1): e1007161, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351274

RESUMEN

In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.


Asunto(s)
ADN Polimerasa beta/fisiología , Replicación del ADN , Escherichia coli/genética , Sitios de Unión/genética , Daño del ADN/genética , ADN Polimerasa beta/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Fusión Génica , Respuesta SOS en Genética/genética
13.
DNA Repair (Amst) ; 58: 47-51, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28865289

RESUMEN

The cDNA encoding human DNA polymerase ι (POLI) was cloned in 1999. At that time, it was believed that the POLI gene encoded a protein of 715 amino acids. Advances in DNA sequencing technologies led to the realization that there is an upstream, in-frame initiation codon that would encode a DNA polymerase ι (polι) protein of 740 amino acids. The extra 25 amino acid region is rich in acidic residues (11/25) and is reasonably conserved in eukaryotes ranging from fish to humans. As a consequence, the curated Reference Sequence (RefSeq) database identified polι as a 740 amino acid protein. However, the existence of the 740 amino acid polι has never been shown experimentally. Using highly specific antibodies to the 25 N-terminal amino acids of polι, we were unable to detect the longer 740 amino acid (ι-long) isoform in western blots. However, trace amounts of the ι-long isoform were detected after enrichment by immunoprecipitation. One might argue that the longer isoform may have a distinct biological function, if it exhibits significant differences in its enzymatic properties from the shorter, well-characterized 715 amino acid polι. We therefore purified and characterized recombinant full-length (740 amino acid) polι-long and compared it to full-length (715 amino acid) polι-short in vitro. The metal ion requirements for optimal catalytic activity differ slightly between ι-long and ι-short, but under optimal conditions, both isoforms exhibit indistinguishable enzymatic properties in vitro. We also report that like ι-short, the ι-long isoform can be monoubiquitinated and polyubiuquitinated in vivo, as well as form damage induced foci in vivo. We conclude that the predominant isoform of DNA polι in human cells is the shorter 715 amino acid protein and that if, or when, expressed, the longer 740 amino acid isoform has identical properties to the considerably more abundant shorter isoform.


Asunto(s)
Codón Iniciador , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Secuencia de Aminoácidos , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Isoenzimas , Ubiquitinación , ADN Polimerasa iota
14.
DNA Repair (Amst) ; 50: 71-76, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28077247

RESUMEN

In 2003, we reported that 129-derived strains of mice carry a naturally occurring nonsense mutation at codon 27 of the Poli gene that would produce a polι peptide of just 26 amino acids, rather then the full-length 717 amino acid wild-type polymerase. In support of the genomic analysis, no polι protein was detected in testes extracts from 129X1/SvJmice, where wild-type polι is normally highly expressed. The early truncation in polι occurs before any structural domains of the polymerase are synthesized and as a consequence, we reasoned that 129-derived strains of mice should be considered as functionally defective in polι activity. However, it has recently been reported that during the maturation of the Poli mRNA in 129-derived strains, exon- 2 is sometimes skipped and that an exon-2-less polι protein of 675 amino acids is synthesized that retains catalytic activity in vitro and in vivo. From a structural perspective, we found this idea untenable, given that the amino acids encoded by exon-2 include residues critical for the coordination of the metal ions required for catalysis, as well as the structural integrity of the DNA polymerase. To determine if the exon-2-less polι isoform possesses catalytic activity in vitro, we have purified a glutathione-tagged full-length exon-2-less (675 amino acid) polι protein from baculovirus infected insect cells and compared the activity of the isoform to full-length (717 amino acid) GST-tagged wild-type mouse polι in vitro. Reaction conditions were performed under a range of magnesium or manganese concentrations, as well as different template sequence contexts. Wild-type mouse polι exhibited robust characteristic properties previously associated with human polι's biochemical properties. However, we did not detect any polymerase activity associated with the exon-2-less polι enzyme under the same reaction conditions and conclude that exon-2-less polι is indeed rendered catalytically inactive in vitro.


Asunto(s)
Dominio Catalítico , Codón sin Sentido , ADN Polimerasa Dirigida por ADN/genética , Exones , Eliminación de Secuencia , Secuencia de Aminoácidos , Animales , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Ratones , Conformación Proteica , Alineación de Secuencia , ADN Polimerasa iota
15.
DNA Repair (Amst) ; 44: 42-50, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27236212

RESUMEN

It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli.


Asunto(s)
ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Respuesta SOS en Genética , Daño del ADN , Replicación del ADN , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Aptitud Genética , Variación Genética , Unión Proteica , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Proteolisis
16.
DNA Repair (Amst) ; 35: 1-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26340535

RESUMEN

DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved "steric gate" residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of Saccharomyces cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related pol ι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S.cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNase H2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201(+) counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell's replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/química , Inestabilidad Genómica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alanina/química , Alanina/genética , Sustitución de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Replicación del ADN , ADN de Hongos/química , ADN de Hongos/genética , ADN Polimerasa Dirigida por ADN/genética , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fenilalanina/química , Fenilalanina/genética , Polirribonucleótidos/metabolismo , Ribonucleótidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Rayos Ultravioleta
17.
PLoS Genet ; 11(8): e1005482, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26317348

RESUMEN

Spatial regulation is often encountered as a component of multi-tiered regulatory systems in eukaryotes, where processes are readily segregated by organelle boundaries. Well-characterized examples of spatial regulation are less common in bacteria. Low-fidelity DNA polymerase V (UmuD'2C) is produced in Escherichia coli as part of the bacterial SOS response to DNA damage. Due to the mutagenic potential of this enzyme, pol V activity is controlled by means of an elaborate regulatory system at transcriptional and posttranslational levels. Using single-molecule fluorescence microscopy to visualize UmuC inside living cells in space and time, we now show that pol V is also subject to a novel form of spatial regulation. After an initial delay (~ 45 min) post UV irradiation, UmuC is synthesized, but is not immediately activated. Instead, it is sequestered at the inner cell membrane. The release of UmuC into the cytosol requires the RecA* nucleoprotein filament-mediated cleavage of UmuD→UmuD'. Classic SOS damage response mutants either block [umuD(K97A)] or constitutively stimulate [recA(E38K)] UmuC release from the membrane. Foci of mutagenically active pol V Mut (UmuD'2C-RecA-ATP) formed in the cytosol after UV irradiation do not co-localize with pol III replisomes, suggesting a capacity to promote translesion DNA synthesis at lesions skipped over by DNA polymerase III. In effect, at least three molecular mechanisms limit the amount of time that pol V has to access DNA: (1) transcriptional and posttranslational regulation that initially keep the intracellular levels of pol V to a minimum; (2) spatial regulation via transient sequestration of UmuC at the membrane, which further delays pol V activation; and (3) the hydrolytic activity of a recently discovered pol V Mut ATPase function that limits active polymerase time on the chromosomal template.


Asunto(s)
Daño del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Respuesta SOS en Genética/genética , Replicación del ADN/genética , ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/efectos de la radiación , Activación Enzimática/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efectos de la radiación , Procesamiento Proteico-Postraduccional/genética , Rec A Recombinasas/genética , Transcripción Genética/genética , Rayos Ultravioleta
18.
Mutat Res ; 761: 21-33, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24495324

RESUMEN

Low fidelity Escherichia coli DNA polymerase V (pol V/UmuD'2C) is best characterized for its ability to perform translesion synthesis (TLS). However, in recA730 lexA(Def) strains, the enzyme is expressed under optimal conditions allowing it to compete with the cell's replicase for access to undamaged chromosomal DNA and leads to a substantial increase in spontaneous mutagenesis. We have recently shown that a Y11A substitution in the "steric gate" residue of UmuC reduces both base and sugar selectivity of pol V, but instead of generating an increased number of spontaneous mutations, strains expressing umuC_Y11A are poorly mutable in vivo. This phenotype is attributed to efficient RNase HII-initiated repair of the misincorporated ribonucleotides that concomitantly removes adjacent misincorporated deoxyribonucleotides. We have utilized the ability of the pol V steric gate mutant to promote incorporation of large numbers of errant ribonucleotides into the E. coli genome to investigate the fundamental mechanisms underlying ribonucleotide excision repair (RER). Here, we demonstrate that RER is normally facilitated by DNA polymerase I (pol I) via classical "nick translation". In vitro, pol I displaces 1-3 nucleotides of the RNA/DNA hybrid and through its 5'→3' (exo/endo) nuclease activity releases ribo- and deoxyribonucleotides from DNA. In vivo, umuC_Y11A-dependent mutagenesis changes significantly in polymerase-deficient, or proofreading-deficient polA strains, indicating a pivotal role for pol I in ribonucleotide excision repair (RER). However, there is also considerable redundancy in the RER pathway in E. coli. Pol I's strand displacement and FLAP-exo/endonuclease activities can be facilitated by alternate enzymes, while the DNA polymerization step can be assumed by high-fidelity pol III. We conclude that RNase HII and pol I normally act to minimize the genomic instability that is generated through errant ribonucleotide incorporation, but that the "nick-translation" activities encoded by the single pol I polypeptide can be undertaken by a variety of back-up enzymes.


Asunto(s)
Reparación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Escherichia coli/genética , Ribonucleótidos/genética , Ribonucleótidos/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Replicación del ADN/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo
19.
PLoS Genet ; 9(11): e1003878, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24244177

RESUMEN

Stringent steric exclusion mechanisms limit the misincorporation of ribonucleotides by high-fidelity DNA polymerases into genomic DNA. In contrast, low-fidelity Escherichia coli DNA polymerase V (pol V) has relatively poor sugar discrimination and frequently misincorporates ribonucleotides. Substitution of a steric gate tyrosine residue with alanine (umuC_Y11A) reduces sugar selectivity further and allows pol V to readily misincorporate ribonucleotides as easily as deoxynucleotides, whilst leaving its poor base-substitution fidelity essentially unchanged. However, the mutability of cells expressing the steric gate pol V mutant is very low due to efficient repair mechanisms that are triggered by the misincorporated rNMPs. Comparison of the mutation frequency between strains expressing wild-type and mutant pol V therefore allows us to identify pathways specifically directed at ribonucleotide excision repair (RER). We previously demonstrated that rNMPs incorporated by umuC_Y11A are efficiently removed from DNA in a repair pathway initiated by RNase HII. Using the same approach, we show here that mismatch repair and base excision repair play minimal back-up roles in RER in vivo. In contrast, in the absence of functional RNase HII, umuC_Y11A-dependent mutagenesis increases significantly in ΔuvrA, uvrB5 and ΔuvrC strains, suggesting that rNMPs misincorporated into DNA are actively repaired by nucleotide excision repair (NER) in vivo. Participation of NER in RER was confirmed by reconstituting ribonucleotide-dependent NER in vitro. We show that UvrABC nuclease-catalyzed incisions are readily made on DNA templates containing one, two, or five rNMPs and that the reactions are stimulated by the presence of mispaired bases. Similar to NER of DNA lesions, excision of rNMPs proceeds through dual incisions made at the 8(th) phosphodiester bond 5' and 4(th)-5(th) phosphodiester bonds 3' of the ribonucleotide. Ribonucleotides misinserted into DNA can therefore be added to the broad list of helix-distorting modifications that are substrates for NER.


Asunto(s)
Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Ribonucleótidos/genética , Sustitución de Aminoácidos , ADN/genética , Endodesoxirribonucleasas/genética , Escherichia coli/enzimología , Genoma Bacteriano , Mutación , Células Procariotas , Ribonucleasa H/genética
20.
Nucleic Acids Res ; 41(3): 1649-60, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23248005

RESUMEN

Human DNA polymerases η and ι are best characterized for their ability to facilitate translesion DNA synthesis (TLS). Both polymerases (pols) co-localize in 'replication factories' in vivo after cells are exposed to ultraviolet light and this co-localization is mediated through a physical interaction between the two TLS pols. We have mapped the polη-ι interacting region to their respective ubiquitin-binding domains (UBZ in polη and UBM1 and UBM2 in polι), and demonstrate that ubiquitination of either TLS polymerase is a prerequisite for their physical and functional interaction. Importantly, while monoubiquitination of polη precludes its ability to interact with proliferating cell nuclear antigen (PCNA), it enhances its interaction with polι. Furthermore, a polι-ubiquitin chimera interacts avidly with both polη and PCNA. Thus, the ubiquitination status of polη, or polι plays a key regulatory function in controlling the protein partners with which each polymerase interacts, and in doing so, determines the efficiency of targeting the respective polymerase to stalled replication forks where they facilitate TLS.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Ubiquitina/metabolismo , Sitios de Unión , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Humanos , Modelos Moleculares , Mutación , Dominios y Motivos de Interacción de Proteínas , ADN Polimerasa iota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...