Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540354

RESUMEN

The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.


Asunto(s)
Coturnix , Estudio de Asociación del Genoma Completo , Masculino , Animales , Coturnix/genética , Polimorfismo de Nucleótido Simple/genética , Carne/análisis , Peso Corporal/genética
2.
Foods ; 12(21)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37959150

RESUMEN

Meat is an important source of high-value protein providing sustainable nutrition for human health. The discolouration of meat results in significant waste, which threatens the sustainability of meat production in terms of availability, affordability, and utilisation. Advancing the knowledge of factors and underlying mechanisms for meat discolouration supports the sustainability transformation of meat production practices. Previous studies found that colour stability may be associated with signature changes in certain metabolites, including NADH, glutamate, methionine, and testosterone. This study aimed to confirm the effect of these metabolites and sex, sire, and muscle type on lamb meat colour. NADH and glutamate improved colour stability as evidenced by the increased metmyoglobin reductase activity, while methionine and testosterone had detrimental effects. Overall, lamb meat was discoloured with retail display for up to 10 days at 4 °C. The semitendinosus muscle had higher L*, b*, and hue angle and lower a* (p < 0.05) than other muscles, especially in ewes. Lamb meat from rams had a higher L* and hue angle and lower a* than the ewes (p < 0.05), especially in the colour-labile group, suggesting an interaction between sex and sire. The outcomes of this study will help make the production of meat more sustainable by assisting the meat industry in improving the selection of animals for meat production and processing practices to reduce meat waste due to discolouration.

3.
Animals (Basel) ; 13(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003057

RESUMEN

Traces of long-term artificial selection can be detected in genomes of domesticated birds via whole-genome screening using single-nucleotide polymorphism (SNP) markers. This study thus examined putative genomic regions under selection that are relevant to the development history, divergence and phylogeny among Japanese quails of various breeds and utility types. We sampled 99 birds from eight breeds (11% of the global gene pool) of egg (Japanese, English White, English Black, Tuxedo and Manchurian Golden), meat (Texas White and Pharaoh) and dual-purpose (Estonian) types. The genotyping-by-sequencing analysis was performed for the first time in domestic quails, providing 62,935 SNPs. Using principal component analysis, Neighbor-Net and Admixture algorithms, the studied breeds were characterized according to their genomic architecture, ancestry and direction of selective breeding. Japanese and Pharaoh breeds had the smallest number and length of homozygous segments indicating a lower selective pressure. Tuxedo and Texas White breeds showed the highest values of these indicators and genomic inbreeding suggesting a greater homozygosity. We revealed evidence for the integration of genomic and performance data, and our findings are applicable for elucidating the history of creation and genomic variability in quail breeds that, in turn, will be useful for future breeding improvement strategies.

4.
BMC Genomics ; 24(1): 551, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723422

RESUMEN

BACKGROUND: Producing animal protein while reducing the animal's impact on the environment, e.g., through improved feed efficiency and lowered methane emissions, has gained interest in recent years. Genetic selection is one possible path to reduce the environmental impact of livestock production, but these traits are difficult and expensive to measure on many animals. The rumen microbiome may serve as a proxy for these traits due to its role in feed digestion. Restriction enzyme-reduced representation sequencing (RE-RRS) is a high-throughput and cost-effective approach to rumen metagenome profiling, but the systematic (e.g., sequencing) and biological factors influencing the resulting reference based (RB) and reference free (RF) profiles need to be explored before widespread industry adoption is possible. RESULTS: Metagenome profiles were generated by RE-RRS of 4,479 rumen samples collected from 1,708 sheep, and assigned to eight groups based on diet, age, time off feed, and country (New Zealand or Australia) at the time of sample collection. Systematic effects were found to have minimal influence on metagenome profiles. Diet was a major driver of differences between samples, followed by time off feed, then age of the sheep. The RF approach resulted in more reads being assigned per sample and afforded greater resolution when distinguishing between groups than the RB approach. Normalizing relative abundances within the sampling Cohort abolished structures related to age, diet, and time off feed, allowing a clear signal based on methane emissions to be elucidated. Genus-level abundances of rumen microbes showed low-to-moderate heritability and repeatability and were consistent between diets. CONCLUSIONS: Variation in rumen metagenomic profiles was influenced by diet, age, time off feed and genetics. Not accounting for environmental factors may limit the ability to associate the profile with traits of interest. However, these differences can be accounted for by adjusting for Cohort effects, revealing robust biological signals. The abundances of some genera were consistently heritable and repeatable across different environments, suggesting that metagenomic profiles could be used to predict an individual's future performance, or performance of its offspring, in a range of environments. These results highlight the potential of using rumen metagenomic profiles for selection purposes in a practical, agricultural setting.


Asunto(s)
Metagenoma , Microbiota , Animales , Ovinos/genética , Rumen , Ganado , Metano
5.
Genet Sel Evol ; 55(1): 53, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491204

RESUMEN

BACKGROUND: Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emissions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months (FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic variance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits. RESULTS: Incorporating metagenome profiles increased the variance explained and prediction accuracy compared to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emissions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagenome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use in prediction of individual animal performance. CONCLUSIONS: This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generating metagenome profiles on thousands of animals for improved prediction of economically and environmentally important traits. A reference-free approach using a microbial relationship matrix from log10 proportions of each tag normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions using RE-RRS metagenome profiles.


Asunto(s)
Metagenoma , Metano , Ovinos/genética , Animales , Femenino , Rumen , Dióxido de Carbono , ARN Ribosómico 16S/genética , Fenotipo , Dieta/veterinaria , Alimentación Animal
6.
Anim Genet ; 54(2): 104-112, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36639915

RESUMEN

Intestinal atresia is an under-diagnosed congenital defect in cattle. It results in complete occlusion of the intestinal lumen and, unless surgically corrected, results in death or euthanasia of the affected calf. There is limited information on the incidence of this condition or on risk factors, including predisposing alleles, associated with the defect. In this study, active surveillance of 39 dairy farms over 8 years identified 197 cases of intestinal atresia among 56 454 calves born, an incidence of 0.35%. The majority of cases (83%) had occlusion of the jejunum, although cases with blockage of the colon (14%) or anus (4%) were also identified. The defect was twice as common in male as in female calves (p < 0.0001), and was more common in progeny of older cows than in progeny of first or second lactation cows (p < 0.001). Year and farm of birth were also significantly associated with incidence (p < 0.05). The incidence of intestinal atresia was highest among the progeny of three related Jersey sires, suggesting that a gene for intestinal atresia was segregating within this family. Linkage analysis utilising 28 affected progeny of two half-sib putative carrier sires identified two putative quantitative trait loci associated with the defect, on chromosomes 14 and 26, although no clear candidate genes were identified. There was no evidence of a sire-effect among the progeny of Holstein-Friesian sires. However, a case-control genome-wide association study involving 91 cases and 375 healthy controls, identified 31 SNP in 18 loci as associated with the defect in this breed. These data suggest that intestinal atresia in dairy calves is not a simple Mendelian trait as previously reported but a complex multigenic disorder.


Asunto(s)
Atresia Intestinal , Embarazo , Animales , Bovinos/genética , Femenino , Masculino , Atresia Intestinal/genética , Atresia Intestinal/veterinaria , Estudio de Asociación del Genoma Completo , Parto , Factores de Riesgo , Lactancia
7.
Front Genet ; 13: 910413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246641

RESUMEN

Enteric methane emissions from ruminants account for ∼35% of New Zealand's greenhouse gas emissions. This poses a significant threat to the pastoral sector. Breeding has been shown to successfully lower methane emissions, and genomic prediction for lowered methane emissions has been introduced at the national level. The long-term genetic impacts of including low methane in ruminant breeding programs, however, are unknown. The success of the New Zealand sheep industry is currently heavily reliant on the prolificacy, fecundity and survival of adult ewes. The objective of this study was to determine genetic and phenotypic correlations between adult maternal ewe traits (live weight, body condition score, number of lambs born, litter survival to weaning, pregnancy scanning and fleece weight), faecal and Nematodirus egg counts and measures of methane in respiration chambers. More than 9,000 records for methane from over 2,200 sheep measured in respiration chambers were collected over 10 years. Sheep were fed on a restricted diet calculated as approximately twice the maintenance. Methane measures were converted to absolute daily emissions of methane measured in g per day (CH4/day). Two measures of methane yield were recorded: the ratio of CH4 to dry matter intake (g CH4/kg DMI; CH4/DMI) and the ratio of CH4 to total gas emissions (CH4/(CH4 + CO2)). Ewes were maintained in the flocks for at least two parities. Non-methane trait data from over 8,000 female relatives were collated to estimate genetic correlations. Results suggest that breeding for low CH4/DMI is unlikely to negatively affect faecal egg counts, adult ewe fertility and litter survival traits, with no evidence for significant genetic correlations. Fleece weight was unfavourably (favourably) correlated with CH4/DMI (rg = -0.21 ± 0.09). Live weight (rg = 0.3 ± 0.1) and body condition score (rg = 0.2 ± 0.1) were positively correlated with methane yield. Comparing the two estimates of methane yield, CH4/DMI had lower heritability and repeatability. However, correlations of both measures with adult ewe traits were similar. This suggests that breeding is a suitable mitigation strategy for lowering methane yield, but wool, live weight and fat deposition traits may be affected over time and should be monitored.

8.
Front Genet ; 13: 911639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051695

RESUMEN

There is simultaneous interest in improving the feed efficiency of ruminant livestock and reducing methane (CH4) emissions. The relationship (genetic and phenotypic) between feed efficiency (characterized as residual feed intake: RFI) and greenhouse gases [methane (CH4) and carbon dioxide (CO2)] traits in New Zealand (NZ) maternal sheep has not previously been investigated, nor has their relationship with detailed estimates of body composition. To investigate these relationships in NZ maternal sheep, a feed intake facility was established at AgResearch Invermay, Mosgiel, NZ in 2015, comprising automated feeders that record individual feeding events. Individual measures of feed intake, feeding behavior (length and duration of eating events), and gas emissions (estimated using portable accumulation chambers) were generated on 986 growing maternal ewe lambs sourced from three pedigree recorded flocks registered in the Sheep Improvement Limited database (www.sil.co.nz). Additional data were generated from a subset of 591 animals for body composition (estimated using ultrasound and computed tomography scanning). The heritability estimates for RFI, CH4, and CH4/(CH4+CO2) were 0.42 ± 0.09, 0.32 ± 0.08, and 0.29 ± 0.06, respectively. The heritability estimates for the body composition traits were high for carcass lean and fat traits; for example, the heritability for visceral fat (adjusted for body weight) was 0.93 ± 0.19. The relationship between RFI and CH4 emissions was complex, and although less feed eaten will lead to a lowered absolute amount of CH4 emitted, there was a negative phenotypic and genetic correlation between RFI and CH4/(CH4+CO2) of -0.13 ± 0.03 and -0.41 ± 0.15, respectively. There were also genetic correlations, that were different from zero, between both RFI and CH4 traits with body composition including a negative correlation between the proportion of visceral fat in the body and RFI (-0.52 ± 0.16) and a positive correlation between the proportion of lean in the body and CH4 (0.54 ± 0.12). Together the results provide the first accurate estimates of the genetic correlations between RFI, CH4 emissions, and the body composition (lean and fat) in sheep. These correlations will need to be accounted for in genetic improvement programs.

9.
Animals (Basel) ; 12(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35681887

RESUMEN

The fat tail is a phenotype that divides indigenous Iranian sheep genetic resources into two major groups. The objective of the present study is to refine the map location of candidate regions associated with fat deposition, obtained via two separate whole genome scans contrasting thin and fat tail breeds, and to determine the nature of the selection occurring in these regions using a hitchhiking approach. Zel (thin tail) and Lori-Bakhtiari (fat tail) breed samples that had previously been run on the Illumina Ovine 50 k BeadChip, were genotyped with a denser set of SNPs in the three candidate regions using a Sequenom Mass ARRAY platform. Statistical tests were then performed using different and complementary methods based on either site frequency (FST and Median homozygosity) or haplotype (iHS and XP-EHH). The results from candidate regions on chromosome 5 and X revealed clear evidence of selection with the derived haplotypes that was consistent with selection to near fixation for the haplotypes affecting fat tail size in the fat tail breed. An analysis of the candidate region on chromosome 7 indicated that selection differentiated the beneficial alleles between breeds and homozygosity has increased in the thin tail breed which also had the ancestral haplotype. These results enabled us to confirm the signature of selection in these regions and refine the critical intervals from 113 kb, 201 kb, and 2831 kb to 28 kb, 142 kb, and 1006 kb on chromosome 5, 7, and X respectively. These regions contain several genes associated with fat metabolism or developmental processes consisting of TCF7 and PPP2CA (OAR5), PTGDR and NID2 (OAR7), AR, EBP, CACNA1F, HSD17B10,SLC35A2, BMP15, WDR13, and RBM3 (OAR X), and each of which could potentially be the actual target of selection. The study of core haplotypes alleles in our regions of interest also supported the hypothesis that the first domesticated sheep were thin tailed, and that fat tail animals were developed later. Overall, our results provide a comprehensive assessment of how and where selection has affected the patterns of variation in candidate regions associated with fat deposition in thin and fat tail sheep breeds.

10.
Anim Microbiome ; 4(1): 39, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668514

RESUMEN

BACKGROUND: The use of rumen microbial community (RMC) profiles to predict methane emissions has driven interest in ruminal DNA preservation and extraction protocols that can be processed cheaply while also maintaining or improving DNA quality for RMC profiling. Our standard approach for preserving rumen samples, as defined in the Global Rumen Census (GRC), requires time-consuming pre-processing steps of freeze drying and grinding prior to international transportation and DNA extraction. This impedes researchers unable to access sufficient funding or infrastructure. To circumvent these pre-processing steps, we investigated three methods of preserving rumen samples for subsequent DNA extraction, based on existing lysis buffers Tris-NaCl-EDTA-SDS (TNx2) and guanidine hydrochloride (GHx2), or 100% ethanol. RESULTS: Rumen samples were collected via stomach intubation from 151 sheep at two time-points 2 weeks apart. Each sample was separated into four subsamples and preserved using the three preservation methods and the GRC method (n = 4 × 302). DNA was extracted and sequenced using Restriction Enzyme-Reduced Representation Sequencing to generate RMC profiles. Differences in DNA yield, quality and integrity, and sequencing metrics were observed across the methods (p < 0.0001). Ethanol exhibited poorer quality DNA (A260/A230 < 2) and more failed samples compared to the other methods. Samples preserved using the GRC method had smaller relative abundances in gram-negative genera Anaerovibrio, Bacteroides, Prevotella, Selenomonas, and Succiniclasticum, but larger relative abundances in the majority of 56 additional genera compared to TNx2 and GHx2. However, log10 relative abundances across all genera and time-points for TNx2 and GHx2 were on average consistent (R2 > 0.99) but slightly more variable compared to the GRC method. Relative abundances were moderately to highly correlated (0.68 ± 0.13) between methods for samples collected within a time-point, which was greater than the average correlation (0.17 ± 0.11) between time-points within a preservation method. CONCLUSIONS: The two modified lysis buffers solutions (TNx2 and GHx2) proposed in this study were shown to be viable alternatives to the GRC method for RMC profiling in sheep. Use of these preservative solutions reduces cost and improves throughput associated with processing and sequencing ruminal samples. This development could significantly advance implementation of RMC profiles as a tool for breeding ruminant livestock.

11.
J Sci Food Agric ; 102(11): 4813-4819, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35229322

RESUMEN

BACKGROUND: This study explored the genetic variability in the New Zealand sheep population for economically important skin traits. Skins were collected at slaughter from two progeny test flocks, resulting in 725 skins evaluated for grain strain, flatness, crust leather strength and overall suitability for shoe leather. DNA profiles collected from skins post-slaughter were matched to individual animals using previously collected high-density genotypes. RESULTS: Considerable phenotypic variation for skin traits was observed, with around 40% of the skins being identified as suitable for high-value shoe leather production. Several key traits associated with leather production, including flatness, tear strength, grain strength and grain strain were found to be moderate to highly heritable (h2 = 0.28-0.82). There were no major significant genome-wide association study (GWAS) peaks associated with many of the traits examined, however, one single-nucleotide polymorphism (SNP) reached significance for the flatness of the skin over the hindquarters. CONCLUSION: This research confirms that suitable lamb skins can be bred for use as high-value shoe leather. While moderately to highly heritable, skin traits in New Zealand lambs appear to be polygenic with no genes of major effect underlaying the traits of interest. Given the complex nature of these traits, the identification and selection of animals with higher-value skins may be enabled by geomic selection. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fitomejoramiento , Animales , Nueva Zelanda , Polimorfismo de Nucleótido Simple , Ovinos/genética , Piel
12.
J Anim Breed Genet ; 139(1): 1-12, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34418183

RESUMEN

The goal of this study was to assess the feasibility of across-country genomic predictions in Norwegian White Sheep (NWS) and New Zealand Composite (NZC) sheep populations with similar development history. Different training populations were evaluated (i.e., including only NWS or NZC, or combining both populations). Predictions were performed using the actual phenotypes (normalized) and the single-step GBLUP via Bayesian inference. Genotyped NWS animals born in 2016 (N = 267) were used to assess the accuracy and bias of genomic estimated breeding values (GEBVs) predicted for birth weight (BW), weaning weight (WW), carcass weight (CW), EUROP carcass classification (EUC), and EUROP fat grading (EUF). The accuracy and bias of GEBVs differed across traits and training population used. For instance, the GEBV accuracies ranged from 0.13 (BW) to 0.44 (EUC) for GEBVs predicted including only NWS, from 0.06 (BW) to 0.15 (CW) when including only NZC, and from 0.10 (BW) to 0.41 (EUC) when including both NWS and NZC animals in the training population. The regression coefficients used to assess the spread of GEBVs (bias) ranged from 0.26 (BW) to 0.64 (EUF) for only NWS, 0.10 (EUC) to 0.52 (CW) for only NZC, and from 0.42 (WW) to 2.23 (EUC) for both NWS and NZC in the training population. Our findings suggest that across-country genomic predictions based on ssGBLUP might be possible for NWS and NZC, especially for novel traits.


Asunto(s)
Genoma , Genómica , Animales , Teorema de Bayes , Genotipo , Modelos Genéticos , Nueva Zelanda , Fenotipo , Polimorfismo de Nucleótido Simple , Ovinos/genética
13.
Genes (Basel) ; 12(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680955

RESUMEN

Facial eczema (FE) is a significant metabolic disease that affects New Zealand ruminants. Ingestion of the mycotoxin sporidesmin leads to liver and bile duct damage, which can result in photosensitisation, reduced productivity and death. Strategies used to manage the incidence and severity of the disease include breeding. In sheep, there is considerable genetic variation in the response to FE. A commercial testing program is available for ram breeders who aim to increase tolerance, determined by the concentration of the serum enzyme, gamma-glutamyltransferase 21 days after a measured sporidesmin challenge (GGT21). Genome-wide association studies were carried out to determine regions of the genome associated with GGT21. Two regions on chromosomes 15 and 24 are reported, which explain 5% and 1% of the phenotypic variance in the response to FE, respectively. The region on chromosome 15 contains the ß-globin locus. Of the significant SNPs in the region, one is a missense variant within the haemoglobin subunit ß (HBB) gene. Mass spectrometry of haemoglobin from animals with differing genotypes at this locus indicated that genotypes are associated with different forms of adult ß-globin. Haemoglobin haplotypes have previously been associated with variation in several health-related traits in sheep and warrant further investigation regarding their role in tolerance to FE in sheep. We show a strategic approach to the identification of regions of importance for commercial breeding programs with a combination of discovery, statistical and biological validation. This study highlights the power of using increased density genotyping for the identification of influential genomic regions, combined with subsequent inclusion on lower density genotyping platforms.


Asunto(s)
Eccema/genética , Estudio de Asociación del Genoma Completo/veterinaria , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Enfermedades de las Ovejas/genética , Animales , Eccema/sangre , Eccema/etiología , Eccema/veterinaria , Estudio de Asociación del Genoma Completo/métodos , Hemoglobinas/genética , Ovinos , Enfermedades de las Ovejas/sangre , Enfermedades de las Ovejas/etiología , Esporidesminas/toxicidad , gamma-Glutamiltransferasa/sangre
14.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34542587

RESUMEN

Events of inbreeding are inevitable in critically endangered species. Reduced population sizes and unique life-history traits can increase the severity of inbreeding, leading to declines in fitness and increased risk of extinction. Here, we investigate levels of inbreeding in a critically endangered flightless parrot, the kakapo (Strigops habroptilus), wherein a highly inbred island population and one individual from the mainland of New Zealand founded the entire extant population. Genotyping-by-sequencing (GBS), and a genotype calling approach using a chromosome-level genome assembly, identified a filtered set of 12,241 single-nucleotide polymorphisms (SNPs) among 161 kakapo, which together encompass the total genetic potential of the extant population. Multiple molecular-based estimates of inbreeding were compared, including genome-wide estimates of heterozygosity (FH), the diagonal elements of a genomic-relatedness matrix (FGRM), and runs of homozygosity (RoH, FRoH). In addition, we compared levels of inbreeding in chicks from a recent breeding season to examine if inbreeding is associated with offspring survival. The density of SNPs generated with GBS was sufficient to identify chromosomes that were largely homozygous with RoH distributed in similar patterns to other inbred species. Measures of inbreeding were largely correlated and differed significantly between descendants of the two founding populations. However, neither inbreeding nor ancestry was found to be associated with reduced survivorship in chicks, owing to unexpected mortality in chicks exhibiting low levels of inbreeding. Our study highlights important considerations for estimating inbreeding in critically endangered species, such as the impacts of small population sizes and admixture between diverse lineages.


Asunto(s)
Endogamia , Loros , Animales , Genoma , Genómica , Genotipo , Homocigoto , Polimorfismo de Nucleótido Simple
15.
G3 (Bethesda) ; 10(6): 2069-2078, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32312839

RESUMEN

Arctic charr (Salvelinus alpinus) is a species of high economic value for the aquaculture industry, and of high ecological value due to its Holarctic distribution in both marine and freshwater environments. Novel genome sequencing approaches enable the study of population and quantitative genetic parameters even on species with limited or no prior genomic resources. Low coverage genotyping by sequencing (GBS) was applied in a selected strain of Arctic charr in Sweden originating from a landlocked freshwater population. For the needs of the current study, animals from year classes 2013 (171 animals, parental population) and 2017 (759 animals; 13 full sib families) were used as a template for identifying genome wide single nucleotide polymorphisms (SNPs). GBS libraries were constructed using the PstI and MspI restriction enzymes. Approximately 14.5K SNPs passed quality control and were used for estimating a genomic relationship matrix. Thereafter a wide range of analyses were conducted in order to gain insights regarding genetic diversity and investigate the efficiency of the genomic information for parentage assignment and breeding value estimation. Heterozygosity estimates for both year classes suggested a slight excess of heterozygotes. Furthermore, FST estimates among the families of year class 2017 ranged between 0.009 - 0.066. Principal components analysis (PCA) and discriminant analysis of principal components (DAPC) were applied aiming to identify the existence of genetic clusters among the studied population. Results obtained were in accordance with pedigree records allowing the identification of individual families. Additionally, DNA parentage verification was performed, with results in accordance with the pedigree records with the exception of a putative dam where full sib genotypes suggested a potential recording error. Breeding value estimation for juvenile growth through the usage of the estimated genomic relationship matrix clearly outperformed the pedigree equivalent in terms of prediction accuracy (0.51 opposed to 0.31). Overall, low coverage GBS has proven to be a cost-effective genotyping platform that is expected to boost the selection efficiency of the Arctic charr breeding program.


Asunto(s)
Agua Dulce , Trucha , Animales , Mapeo Cromosómico , Genotipo , Suecia , Trucha/genética
16.
PLoS One ; 15(4): e0219882, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32243481

RESUMEN

Microbial community profiles have been associated with a variety of traits, including methane emissions in livestock. These profiles can be difficult and expensive to obtain for thousands of samples (e.g. for accurate association of microbial profiles with traits), therefore the objective of this work was to develop a low-cost, high-throughput approach to capture the diversity of the rumen microbiome. Restriction enzyme reduced representation sequencing (RE-RRS) using ApeKI or PstI, and two bioinformatic pipelines (reference-based and reference-free) were compared to bacterial 16S rRNA gene sequencing using repeated samples collected two weeks apart from 118 sheep that were phenotypically extreme (60 high and 58 low) for methane emitted per kg dry matter intake (n = 236). DNA was extracted from freeze-dried rumen samples using a phenol chloroform and bead-beating protocol prior to RE-RRS. The resulting sequences were used to investigate the repeatability of the rumen microbial community profiles, the effect of laboratory and analytical method, and the relationship with methane production. The results suggested that the best method was PstI RE-RRS analyzed with the reference-free approach, which accounted for 53.3±5.9% of reads, and had repeatabilities of 0.49±0.07 and 0.50±0.07 for the first two principal components (PC1 and PC2), phenotypic correlations with methane yield of 0.43±0.06 and 0.46±0.06 for PC1 and PC2, and explained 41±8% of the variation in methane yield. These results were significantly better than for bacterial 16S rRNA gene sequencing of the same samples (p<0.05) except for the correlation between PC2 and methane yield. A Sensitivity study suggested approximately 2000 samples could be sequenced in a single lane on an Illumina HiSeq 2500, meaning the current work using 118 samples/lane and future proposed 384 samples/lane are well within that threshold. With minor adaptations, our approach could be used to obtain microbial profiles from other metagenomic samples.


Asunto(s)
Microbioma Gastrointestinal , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Rumen/microbiología , Ovinos/microbiología , Animales , Bacterias/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Masculino , Metagenoma , Metagenómica/economía , Microbiota , ARN Ribosómico 16S/genética
17.
Mol Ecol ; 28(20): 4552-4572, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31541577

RESUMEN

The Southern Ocean represents a continuous stretch of circumpolar marine habitat, but the potential physical and ecological drivers of evolutionary genetic differentiation across this vast ecosystem remain unclear. We tested for genetic structure across the full circumpolar range of the white-chinned petrel (Procellaria aequinoctialis) to unravel the potential drivers of population differentiation and test alternative population differentiation hypotheses. Following range-wide comprehensive sampling, we applied genomic (genotyping-by-sequencing or GBS; 60,709 loci) and standard mitochondrial-marker approaches (cytochrome b and first domain of control region) to quantify genetic diversity within and among island populations, test for isolation by distance, and quantify the number of genetic clusters using neutral and outlier (non-neutral) loci. Our results supported the multi-region hypothesis, with a range of analyses showing clear three-region genetic population structure, split by ocean basin, within two evolutionary units. The most significant differentiation between these regions confirmed previous work distinguishing New Zealand and nominate subspecies. Although there was little evidence of structure within the island groups of the Indian or Atlantic oceans, a small set of highly-discriminatory outlier loci could assign petrels to ocean basin and potentially to island group, though the latter needs further verification. Genomic data hold the key to revealing substantial regional genetic structure within wide-ranging circumpolar species previously assumed to be panmictic.


Asunto(s)
Migración Animal/fisiología , Aves/genética , Especiación Genética , Variación Genética/genética , Animales , Océano Atlántico , Aves/clasificación , Mapeo Cromosómico , Citocromos b/genética , ADN Mitocondrial/genética , Evolución Molecular , Genética de Población , Genoma/genética , Genotipo , Nueva Zelanda
18.
G3 (Bethesda) ; 9(10): 3239-3247, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31383721

RESUMEN

Genotypes are often used to assign parentage in agricultural and ecological settings. Sequencing can be used to obtain genotypes but does not provide unambiguous genotype calls, especially when sequencing depth is low in order to reduce costs. In that case, standard parentage analysis methods no longer apply. A strategy for using low-depth sequencing data for parentage assignment is developed here. It entails the use of relatedness estimates along with a metric termed excess mismatch rate which, for parent-offspring pairs or trios, is the difference between the observed mismatch rate and the rate expected under a model of inheritance and allele reads without error. When more than one putative parent has similar statistics, bootstrapping can provide a measure of the relatedness similarity. Putative parent-offspring trios can be further checked for consistency by comparing the offspring's estimated inbreeding to half the parent relatedness. Suitable thresholds are required for each metric. These methods were applied to a deer breeding operation consisting of two herds of different breeds. Relatedness estimates were more in line with expectation when the herds were analyzed separately than when combined, although this did not alter which parents were the best matches with each offspring. Parentage results were largely consistent with those based on a microsatellite parentage panel with three discordant parent assignments out of 1561. Two models are investigated to allow the parentage metrics to be calculated with non-random selection of alleles. The tools and strategies given here allow parentage to be assigned from low-depth sequencing data.


Asunto(s)
Genómica , Genotipo , Técnicas de Genotipaje , Linaje , Algoritmos , Alelos , Cruzamiento , Bases de Datos Genéticas , Familia , Frecuencia de los Genes , Genómica/métodos , Repeticiones de Microsatélite , Modelos Genéticos , Análisis de Secuencia de ADN
19.
J Anim Sci ; 97(7): 2711-2724, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31212318

RESUMEN

Animal-to-animal variation in methane (CH4) emissions determined in respiration chambers has a genetic basis, but rapid phenotyping methods that can be applied on-farm are required to enable increased genetic progress by the farming industry. Fermentation of carbohydrates in the rumen results in the formation of VFA with hydrogen (H2) as a byproduct that is used for CH4 formation. Generally, fermentation pathways leading to acetate are associated with the most H2 production, less H2 formation is associated with butyrate production, and propionate and valerate production are associated with reduced H2 production. Therefore, VFA may constitute a potential correlated proxy for CH4 emissions to enable high-throughput animal screening. The objective of the present study was to determine the genetic parameters for ruminal and plasma VFA concentrations in sheep fed alfalfa (Medicago sativa L.) pellets and their genetic (rg) and phenotypic (rp) correlations with CH4 emissions. Measurements of CH4 emissions in respiration chambers and ruminal (stomach tubing 18 h from last meal) and blood plasma (3 h post-feeding) VFA concentrations were made on 1,538 lambs from 5 birth years (2007 and 2009 to 2012) aged between 5 and 10 mo, while the animals were fed alfalfa pellets at 2.0 times maintenance requirements in 2 equal size meals (0900 and 1500 h). These measurements were repeated twice (rounds) 14 d apart. Mean (± SD) CH4 production was 24.4 ± 3.08 g/d, and the mean CH4 yield was 15.8 ± 1.51 g/kg DMI. Mean concentration of total ruminal VFA was 52.2 mM, with concentrations of acetate, propionate and butyrate of 35.97, 8.83, and 4.02 mM, respectively. Ruminal total VFA concentration had heritability (h2) and repeatability estimates (± SE) of 0.24 ± 0.05 and 0.35 ± 0.03, respectively, and similar estimates were found for acetate, propionate, and butyrate. Blood plasma concentrations of VFA had much lower estimates of h2 and repeatability than ruminal VFA. Genetic correlations with CH4 yield were greatest for total concentrations of ruminal VFA and acetate, with 0.54 ± 0.12 and 0.56 ± 0.12, respectively, which were much greater than their corresponding rp. The rp and rg of ruminal VFA proportions and blood VFAs with CH4 emissions were in general lower than for ruminal VFA concentrations. However, minor ruminal VFA proportions had also moderate rg with CH4 yield. Pre-feeding concentrations of total VFA and acetate were the strongest correlated proxies to select sheep that are genetically low CH4 emitters.


Asunto(s)
Ácidos Grasos Volátiles/metabolismo , Medicago sativa , Metano/metabolismo , Ovinos/genética , Animales , Cruzamiento , Ácidos Grasos Volátiles/sangre , Femenino , Fermentación , Hidrógeno/metabolismo , Masculino , Metano/análisis , Propionatos/metabolismo , Rumen/metabolismo , Ovinos/fisiología
20.
Genes (Basel) ; 9(11)2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30424003

RESUMEN

Black-billed gulls (Larus bulleri) are endemic to New Zealand and are suspected to be undergoing substantial population declines. They primarily breed on open gravel beds in braided rivers of the South Island-a habitat that is diminishing and becoming increasingly modified. Although management of this species is increasing, little has been published on their movements and demographics. In this study, both mitochondrial DNA (mtDNA) control region domain I and nuclear single nucleotide polymorphisms (SNPs) were examined to help understand the connectivity and population structure of black-billed gulls across the country and to help inform management decisions. Mitochondrial DNA showed no population structure, with high haplotype and low nucleotide diversity, and analyses highlighted mitochondrial introgression with the closely related red-billed gulls (Larus novaehollandiae scopulinus). Nuclear DNA analyses, however, identified two groups, with Rotorua birds in the North Island being distinct from the rest of New Zealand, and isolation-by-distance evident across the South Island populations. Gene flow primarily occurs between nearby colonies with a stepwise movement across the landscape. The importance from a genetic perspective of the more isolated North Island birds (1.6% of total population) needs to be further evaluated. From our results, we infer that the South Island black-billed gull management should focus on maintaining several populations within each region rather than focusing on single specific colonies or river catchments. Future study is needed to investigate the genetic structure of populations at the northern limit of the species' range, and identify the mechanisms behind, and extent of, the hybridisation between red-billed and black-billed gulls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA