Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Parasitol ; 40(2): 100-101, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38129281

RESUMEN

The term 'simian malaria parasites' has crept into the modern malaria literature as a synonym for 'non-human primate malaria parasites', most commonly referring to species of Plasmodium infective to Old World monkeys. As humans are also simians, we contend that this usage is erroneous, and should not be used.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Humanos , Primates
3.
BMC Biol ; 16(1): 140, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30482182

RESUMEN

The capture and enslavement of eukaryotic algae by unicellular predators to acquire photosynthesis was a major driving force in early eukaryotic diversification. A genome presented in BMC Biology provides a glimpse of how such a tiny predator might have preyed on red algae and detained them to create new lineages of photosynthetic organisms.


Asunto(s)
Apetito , Criptófitas , Eucariontes/genética , Genoma , Fotosíntesis , Plastidios
4.
Artículo en Inglés | MEDLINE | ID: mdl-29109165

RESUMEN

Malaria parasites contain a relict plastid, the apicoplast, which is considered an excellent drug target due to its bacterial-like ancestry. Numerous parasiticidals have been proposed to target the apicoplast, but few have had their actual targets substantiated. Isopentenyl pyrophosphate (IPP) production is the sole required function of the apicoplast in the blood stage of the parasite life cycle, and IPP supplementation rescues parasites from apicoplast-perturbing drugs. Hence, any drug that kills parasites when IPP is supplied in culture must have a nonapicoplast target. Here, we use IPP supplementation to discriminate whether 23 purported apicoplast-targeting drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly, fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating that these drugs have their primary targets outside the apicoplast, which agrees with the dispensability of the apicoplast fatty acid synthesis pathways in the blood stage of malaria parasites. IPP supplementation provides a simple test of whether a compound has a target in the apicoplast and can be used to screen novel compounds for mode of action.


Asunto(s)
Antimaláricos/farmacología , Apicoplastos/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Plasmodium falciparum/citología , Plasmodium falciparum/efectos de los fármacos , Apicoplastos/genética , Azitromicina/farmacología , Células Cultivadas , Ácidos Grasos/antagonistas & inhibidores , Ácidos Grasos/biosíntesis , Hemo/antagonistas & inhibidores , Hemo/biosíntesis , Hemiterpenos/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Malaria Falciparum/parasitología , Compuestos Organofosforados/farmacología , Proteínas Protozoarias/metabolismo
5.
Int J Parasitol ; 47(2-3): 137-144, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27773518

RESUMEN

Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. Here we review the initial discovery of the apicoplast, and recount the major new insights into apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be removed from malaria parasites in vitro, ultimately completing its reduction by chemical supplementation.


Asunto(s)
Apicoplastos , Plasmodium/ultraestructura , Animales , Apicoplastos/fisiología , Evolución Biológica , Humanos , Plasmodium/fisiología , Simbiosis
6.
Blood ; 125(3): 534-41, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25414439

RESUMEN

Many red cell polymorphisms are a result of selective pressure by the malarial parasite. Here, we add another red cell disease to the panoply of erythrocytic changes that give rise to resistance to malaria. Erythrocytes from individuals with erythropoietic protoporphyria (EPP) have low levels of the final enzyme in the heme biosynthetic pathway, ferrochelatase. Cells from these patients are resistant to the growth of Plasmodium falciparum malarial parasites. This phenomenon is due to the absence of ferrochelatase and not an accumulation of substrate, as demonstrated by the normal growth of P falciparum parasites in the EPP phenocopy, X-linked dominant protoporphyria, which has elevated substrate, and normal ferrochelatase levels. This observation was replicated in a mouse strain with a hypomorphic mutation in the murine ferrochelatase gene. The parasite enzyme is not essential for parasite growth as Plasmodium berghei parasites carrying a complete deletion of the ferrochelatase gene grow normally in erythrocytes, which confirms previous studies. That ferrochelatase is essential to parasite growth was confirmed by showing that inhibition of ferrochelatase using the specific competitive inhibitor, N-methylprotoporphyrin, produced a potent growth inhibition effect against cultures of P falciparum. This raises the possibility of targeting human ferrochelatase in a host-directed antimalarial strategy.


Asunto(s)
Eritrocitos/parasitología , Ferroquelatasa/fisiología , Malaria Falciparum/prevención & control , Plasmodium berghei/crecimiento & desarrollo , Protoporfiria Eritropoyética/prevención & control , Animales , Eritrocitos/enzimología , Femenino , Ferroquelatasa/antagonistas & inhibidores , Hemo/metabolismo , Humanos , Malaria Falciparum/enzimología , Malaria Falciparum/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Protoporfiria Eritropoyética/enzimología , Protoporfiria Eritropoyética/parasitología , Protoporfirinas/farmacología
7.
Trends Parasitol ; 28(8): 306, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22738856
8.
Protoplasma ; 248(4): 641-50, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21165662

RESUMEN

Parasites like malaria and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of plants. The plastid (known as the apicoplast) is non-photosynthetic but retains many hallmarks of its ancestry including a circular genome that it synthesises proteins from and a suite of biosynthetic pathways of cyanobacterial origin. In this review, the discovery of the apicoplast and its integration, function and purpose are explored. New insights into the apicoplast fatty acid biosynthesis pathway and some novel roles of the apicoplast in vaccine development are reviewed.


Asunto(s)
Apicomplexa/fisiología , Ácidos Grasos/biosíntesis , Plastidios/fisiología , Antiprotozoarios/farmacología , Apicomplexa/efectos de los fármacos , Apicomplexa/inmunología , Apicomplexa/metabolismo , Inmunidad , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiología , Microscopía Electrónica de Transmisión , Plastidios/efectos de los fármacos , Plastidios/inmunología , Plastidios/metabolismo , Plastidios/ultraestructura , Transporte de Proteínas , Infecciones por Protozoos/inmunología , Infecciones por Protozoos/parasitología , Infecciones por Protozoos/terapia , Simbiosis
9.
Philos Trans R Soc Lond B Biol Sci ; 365(1541): 749-63, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20124342

RESUMEN

The malaria parasite, Plasmodium falciparum, harbours a relict plastid known as the 'apicoplast'. The discovery of the apicoplast ushered in an exciting new prospect for drug development against the parasite. The eubacterial ancestry of the organelle offers a wealth of opportunities for the development of therapeutic interventions. Morphological, biochemical and bioinformatic studies of the apicoplast have further reinforced its 'plant-like' characteristics and potential as a drug target. However, we are still not sure why the apicoplast is essential for the parasite's survival. This review explores the origins and metabolic functions of the apicoplast. In an attempt to decipher the role of the organelle within the parasite we also take a closer look at the transporters decorating the plastid to better understand the metabolic exchanges between the apicoplast and the rest of the parasite cell.


Asunto(s)
Apicomplexa/genética , Apicomplexa/metabolismo , Evolución Biológica , Plastidios/genética , Plastidios/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apicomplexa/patogenicidad , Cloroplastos/metabolismo , Ácidos Grasos/biosíntesis , Transferencia de Gen Horizontal , Hemo/biosíntesis , Humanos , Proteínas Hierro-Azufre/biosíntesis , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Plasmodium/genética , Plasmodium/crecimiento & desarrollo , Plasmodium/metabolismo , Plasmodium/patogenicidad , Transporte de Proteínas , Simbiosis/genética , Simbiosis/fisiología , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...