Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; : e0009124, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842342

RESUMEN

Pathogenic species within the Rickettsia genus are transmitted to humans through arthropod vectors and cause a spectrum of diseases ranging from mild to life-threatening. Despite rickettsiae posing an emerging global health risk, the genetic requirements of their infectious life cycles remain poorly understood. A major hurdle toward building this understanding has been the lack of efficient tools for genetic manipulation, owing to the technical difficulties associated with their obligate intracellular nature. To this end, we implemented the Tet-On system to enable conditional gene expression in Rickettsia parkeri. Using Tet-On, we show inducible expression of antibiotic resistance and a fluorescent reporter. We further used this inducible promoter to screen the ability of R. parkeri to express four variants of the catalytically dead Cas9 (dCas9). We demonstrate that all four dCas9 variants can be expressed in R. parkeri and used for CRISPR interference (CRISPRi)-mediated targeted gene knockdown. We show targeted knockdown of an antibiotic resistance gene as well as the endogenous virulence factor sca2. Altogether, we have developed systems for inducible gene expression and CRISPRi-mediated gene knockdown for the first time in rickettsiae, laying the groundwork for more scalable, targeted mechanistic investigations into their infectious life cycles.IMPORTANCEThe spotted fever group of Rickettsia contains vector-borne pathogenic bacteria that are neglected and emerging threats to public health. Due to the obligate intracellular nature of rickettsiae, the development of tools for genetic manipulation has been stunted, and the molecular and genetic underpinnings of their infectious lifecycle remain poorly understood. Here, we expand the genetic toolkit by introducing systems for conditional gene expression and CRISPR interference (CRISPRi)-mediated gene knockdown. These systems allow for relatively easy manipulation of rickettsial gene expression. We demonstrate the effectiveness of these tools by disrupting the intracellular life cycle using CRISPRi to deplete the sca2 virulence factor. These tools will be crucial for building a more comprehensive and detailed understanding of rickettsial biology and pathogenesis.

2.
bioRxiv ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38559073

RESUMEN

Pathogenic species within the Rickettsia genus are transmitted to humans through arthropod vectors and cause a spectrum of diseases ranging from mild to life-threatening. Despite rickettsiae posing an emerging global health risk, the genetic requirements of their infectious life cycles remain poorly understood. A major hurdle toward building this understanding has been the lack of efficient tools for genetic manipulation, owing to the technical difficulties associated with their obligate intracellular nature. To this end, we implemented the Tet-On system to enable conditional gene expression in Rickettsia parkeri. Using Tet-On, we show inducible expression of antibiotic resistance and a fluorescent reporter. We further used this inducible promoter to screen the ability of R. parkeri to express four variants of the catalytically dead Cas9 (dCas9). We demonstrate that all four dCas9 variants can be expressed in R. parkeri and used for CRISPR interference (CRISPRi)-mediated targeted gene knockdown. We show targeted knockdown of an antibiotic resistance gene as well as the endogenous virulence factor sca2. Altogether, we have developed systems for inducible gene expression and CRISPRi-mediated gene knockdown for the first time in rickettsiae, laying the groundwork for more scalable, targeted mechanistic investigations into their infectious life cycles.

3.
Cell Host Microbe ; 29(10): 1482-1495.e12, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34582782

RESUMEN

CRISPR-Cas systems provide immunity to bacteria by programing Cas nucleases with RNA guides that recognize and cleave infecting viral genomes. Bacteria and their viruses each encode recombination systems that could repair the cleaved viral DNA. However, it is unknown whether and how these systems can affect CRISPR immunity. Bacteriophage λ uses the Red system (gam-exo-bet) to promote recombination between related phages. Here, we show that λ Red also mediates evasion of CRISPR-Cas targeting. Gam inhibits the host E. coli RecBCD recombination system, allowing recombination and repair of the cleaved DNA by phage Exo-Beta, which promotes the generation of mutations within the CRISPR target sequence. Red recombination is strikingly more efficient than the host's RecBCD-RecA in the production of large numbers of phages that escape CRISPR targeting. These results reveal a role for Red-like systems in the protection of bacteriophages against sequence-specific nucleases, which may facilitate their spread across viral genomes.


Asunto(s)
Bacteriófago lambda/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Mutación , Recombinación Genética , Bacteriófago lambda/inmunología , Bacteriófago lambda/fisiología , Escherichia coli/inmunología , Escherichia coli/virología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/inmunología , Interacciones Huésped-Patógeno , Proteínas Virales/genética , Proteínas Virales/inmunología
4.
Pathog Dis ; 79(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33784388

RESUMEN

Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses and are among the oldest known vector-borne pathogens. Members of this genus are extraordinarily diverse and exhibit a broad host range. To establish intracellular infection, Rickettsia species undergo complex, multistep life cycles that are encoded by heavily streamlined genomes. As a result of reductive genome evolution, rickettsiae are exquisitely tailored to their host cell environment but cannot survive extracellularly. This host-cell dependence makes for a compelling system to uncover novel host-pathogen biology, but it has also hindered experimental progress. Consequently, the molecular details of rickettsial biology and pathogenesis remain poorly understood. With recent advances in molecular biology and genetics, the field is poised to start unraveling the molecular mechanisms of these host-pathogen interactions. Here, we review recent discoveries that have shed light on key aspects of rickettsial biology. These studies have revealed that rickettsiae subvert host cells using mechanisms that are distinct from other better-studied pathogens, underscoring the great potential of the Rickettsia genus for revealing novel biology. We also highlight several open questions as promising areas for future study and discuss the path toward solving the fundamental mysteries of this neglected and emerging human pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Especificidad del Huésped/genética , Estadios del Ciclo de Vida/genética , Infecciones por Rickettsia/microbiología , Rickettsia/genética , Animales , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , Regulación Bacteriana de la Expresión Génica , Humanos , Enfermedades Desatendidas/microbiología , Enfermedades Desatendidas/patología , Mapeo de Interacción de Proteínas , Rickettsia/crecimiento & desarrollo , Rickettsia/metabolismo , Rickettsia/patogenicidad , Infecciones por Rickettsia/patología , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
5.
Cell Host Microbe ; 26(4): 515-526.e6, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31585845

RESUMEN

Type II CRISPR-Cas systems defend prokaryotes from bacteriophage infection through the acquisition of short viral DNA sequences known as spacers, which are transcribed into short RNA guides to specify the targets of the Cas9 nuclease. To counter the potentially devastating propagation of escaper phages with mutations in the target sequences, the host population acquires many different spacers. Whether and how pre-existing spacers in type II systems affect the acquisition of new ones is unknown. Here, we demonstrate that previously acquired spacers promote additional spacer acquisition from the vicinity of the target DNA site cleaved by Cas9. Therefore, CRISPR immune cells acquire additional spacers at the same time as they destroy the infecting virus. This anticipates the rise of escapers or related viruses that could escape targeting by the first spacer acquired. Our results thus reveal Cas9's role in the generation of immunological memories.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN Intergénico/genética , ADN Viral/metabolismo , ARN Guía de Kinetoplastida/genética , Staphylococcus aureus/genética , Streptococcus thermophilus/genética , Bacteriófagos/genética , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Streptococcus thermophilus/inmunología , Streptococcus thermophilus/virología
6.
Nat Rev Microbiol ; 17(1): 7-12, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30171202

RESUMEN

Many bacteria and archaea have the unique ability to heritably alter their genomes by incorporating small fragments of foreign DNA, called spacers, into CRISPR loci. Once transcribed and processed into individual CRISPR RNAs, spacer sequences guide Cas effector nucleases to destroy complementary, invading nucleic acids. Collectively, these two processes are known as the CRISPR-Cas immune response. In this Progress article, we review recent studies that have advanced our understanding of the molecular mechanisms underlying spacer acquisition and that have revealed a fundamental link between the two phases of CRISPR immunity that ensures optimal immunity from newly acquired spacers. Finally, we highlight important open questions and discuss the potential basic and applied impact of spacer acquisition research.


Asunto(s)
Archaea/genética , Bacterias/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Intergénico , Genoma
7.
Mol Cell ; 64(3): 616-623, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27618488

RESUMEN

CRISPR-Cas systems defend prokaryotes against viruses and plasmids. Short DNA segments of the invader, known as spacers, are stored in the CRISPR array as immunological memories. New spacers are added invariably to the 5' end of the array; therefore, the first spacer matches the latest foreign threat. Whether this highly polarized order of spacer insertion influences CRISPR-Cas immunity has not been explored. Here we show that a conserved sequence located immediately upstream of the CRISPR array specifies the site of new spacer integration. Mutation of this sequence results in erroneous incorporation of new spacers into the middle of the array. We show that spacers added through polarized acquisition give rise to more robust CRISPR-Cas immunity than spacers added to the middle of the array. This study demonstrates that the CRISPR-Cas system specifies the site of spacer integration to optimize the immune response against the most immediate threat to the host.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Endonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Streptococcus pyogenes/genética , Regiones no Traducidas 5' , Proteínas Bacterianas/metabolismo , Bacteriófagos/inmunología , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR/inmunología , Cromosomas Bacterianos/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/metabolismo , Sitios Genéticos , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/virología
8.
Methods Mol Biol ; 1093: 195-208, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24178567

RESUMEN

Since their discovery about 20 years ago, small RNAs have been shown to play a critical role in a myriad of biological processes. The greater availability of high-throughput sequencing has been invaluable to furthering our understanding of small RNAs as regulatory molecules. In particular, these sequencing technologies have been crucial in understanding the role of small RNAs in reproductive tissues, where millions of individual sequences are generated. In this context, high-throughput sequencing provides the requisite level of resolution that other procedures, like northern blotting, would not be able to achieve. Here, we describe a protocol for the preparation of small RNA libraries for sequencing using the Solexa/Illumina technology.


Asunto(s)
Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Pequeño no Traducido/genética , Análisis de Secuencia de ARN/métodos , Clonación Molecular , ADN Complementario/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Reacción en Cadena de la Polimerasa , ARN Pequeño no Traducido/aislamiento & purificación , ARN Pequeño no Traducido/metabolismo , Transcripción Reversa
9.
Mol Cell ; 50(5): 749-61, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23665227

RESUMEN

The Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two interrelated branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborate pathway centered on the three gonad-specific Argonaute proteins (Piwi, Aubergine, and Argonaute 3). While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals key factors of piRNA-mediated transposon silencing, including the piRNA biogenesis factors CG2183 (GASZ) and Deadlock. Our data uncover a previously unanticipated set of factors preferentially required for repression of different transposon types.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster/genética , Perfilación de la Expresión Génica/métodos , Ovario/fisiología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Silenciador del Gen , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , ARN Interferente Pequeño/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA