Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Lancet Planet Health ; 8(1): e5-e17, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199723

RESUMEN

BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS: In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS: Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION: Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING: UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.


Asunto(s)
Fluorocarburos , Enfermedades Metabólicas , Adulto , Embarazo , Humanos , Femenino , Masculino , Estudios Transversales , Metaboloma , Escocia , Ácidos y Sales Biliares , Fluorocarburos/efectos adversos
2.
iScience ; 25(9): 104949, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36065182

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent disease that is associated with multiple metabolic disturbances, yet the metabolic pathways underlying its progression are poorly understood. Here, we studied metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed whole liver tissue transcriptomics and serum metabolomics data obtained from a large, prospectively enrolled cohort of 206 histologically characterized patients derived from the European NAFLD Registry and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. We identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids, and their link with complex glycosaminoglycans in advanced fibrosis. Furthermore, we derived GEMs and identified metabolic signatures of three common NAFLD-associated gene variants (PNPLA3, TM6SF2, and HSD17B13). The study demonstrates dysregulated liver metabolic pathways which may contribute to the progression of NAFLD.

3.
JHEP Rep ; 4(5): 100477, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35434590

RESUMEN

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease with potentially severe complications including cirrhosis and hepatocellular carcinoma. Previously, we have identified circulating lipid signatures associating with liver fat content and non-alcoholic steatohepatitis (NASH). Here, we develop a metabolomic map across the NAFLD spectrum, defining interconnected metabolic signatures of steatosis (non-alcoholic fatty liver, NASH, and fibrosis). Methods: We performed mass spectrometry analysis of molecular lipids and polar metabolites in serum samples from the European NAFLD Registry patients (n = 627), representing the full spectrum of NAFLD. Using various univariate, multivariate, and machine learning statistical approaches, we interrogated metabolites across 3 clinical perspectives: steatosis, NASH, and fibrosis. Results: Following generation of the NAFLD metabolic network, we identify 15 metabolites unique to steatosis, 18 to NASH, and 15 to fibrosis, with 27 common to all. We identified that progression from F2 to F3 fibrosis coincides with a key pathophysiological transition point in disease natural history, with n = 73 metabolites altered. Conclusions: Analysis of circulating metabolites provides important insights into the metabolic changes during NAFLD progression, revealing metabolic signatures across the NAFLD spectrum and features that are specific to NAFL, NASH, and fibrosis. The F2-F3 transition marks a critical metabolic transition point in NAFLD pathogenesis, with the data pointing to the pathophysiological importance of metabolic stress and specifically oxidative stress. Clinical Trials registration: The study is registered at Clinicaltrials.gov (NCT04442334). Lay summary: Non-alcoholic fatty liver disease is characterised by the build-up of fat in the liver, which progresses to liver dysfunction, scarring, and irreversible liver failure, and is markedly increasing in its prevalence worldwide. Here, we measured lipids and other small molecules (metabolites) in the blood with the aim of providing a comprehensive molecular overview of fat build-up, liver fibrosis, and diagnosed severity. We identify a key metabolic 'watershed' in the progression of liver damage, separating severe disease from mild, and show that specific lipid and metabolite profiles can help distinguish and/or define these cases.

4.
J Hepatol ; 76(2): 283-293, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34627976

RESUMEN

BACKGROUND & AIMS: Recent experimental models and epidemiological studies suggest that specific environmental contaminants (ECs) contribute to the initiation and pathology of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms linking EC exposure with NAFLD remain poorly understood and there is no data on their impact on the human liver metabolome. Herein, we hypothesized that exposure to ECs, particularly perfluorinated alkyl substances (PFAS), impacts liver metabolism, specifically bile acid metabolism. METHODS: In a well-characterized human NAFLD cohort of 105 individuals, we investigated the effects of EC exposure on liver metabolism. We characterized the liver (via biopsy) and circulating metabolomes using 4 mass spectrometry-based analytical platforms, and measured PFAS and other ECs in serum. We subsequently compared these results with an exposure study in a PPARa-humanized mouse model. RESULTS: PFAS exposure appears associated with perturbation of key hepatic metabolic pathways previously found altered in NAFLD, particularly those related to bile acid and lipid metabolism. We identified stronger associations between the liver metabolome, chemical exposure and NAFLD-associated clinical variables (liver fat content, HOMA-IR), in females than males. Specifically, we observed PFAS-associated upregulation of bile acids, triacylglycerols and ceramides, and association between chemical exposure and dysregulated glucose metabolism in females. The murine exposure study further corroborated our findings, vis-à-vis a sex-specific association between PFAS exposure and NAFLD-associated lipid changes. CONCLUSIONS: Females may be more sensitive to the harmful impacts of PFAS. Lipid-related changes subsequent to PFAS exposure may be secondary to the interplay between PFAS and bile acid metabolism. LAY SUMMARY: There is increasing evidence that specific environmental contaminants, such as perfluorinated alkyl substances (PFAS), contribute to the progression of non-alcoholic fatty liver disease (NAFLD). However, it is poorly understood how these chemicals impact human liver metabolism. Here we show that human exposure to PFAS impacts metabolic processes associated with NAFLD, and that the effect is different in females and males.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Metabolismo de los Lípidos/fisiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Adulto , Aminoácidos/análisis , Aminoácidos/sangre , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/sangre , Femenino , Humanos , Metabolismo de los Lípidos/inmunología , Masculino , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/metabolismo
5.
Front Psychiatry ; 12: 778325, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899431

RESUMEN

Mental disorders are heterogeneous and psychiatric comorbidities are common. Previous studies have suggested a link between inflammation and mental disorders. This link can manifest as increased levels of proinflammatory mediators in circulation and as signs of neuroinflammation. Furthermore, there is strong evidence that individuals suffering from psychiatric disorders have increased risk of developing metabolic comorbidities. Our group has previously shown that, in a cohort of low-functioning individuals with serious mental disorders, there is increased expression of genes associated with the NLRP3 inflammasome, a known sensor of metabolic perturbations, as well as increased levels of IL-1-family cytokines. In the current study, we set out to explore the interplay between disease-specific changes in lipid metabolism and known markers of inflammation. To this end, we performed mass spectrometry-based lipidomic analysis of plasma samples from low-functioning individuals with serious mental disorders (n = 39) and matched healthy controls (n = 39). By identifying non-spurious immune-lipid associations, we derived a partial correlation network of inflammatory markers and molecular lipids. We identified levels of lipids as being altered between individuals with serious mental disorders and controls, showing associations between lipids and inflammatory mediators, e.g., osteopontin and IL-1 receptor antagonist. These results indicate that, in low-functioning individuals with serious mental disorders, changes in specific lipids associate with immune mediators that are known to affect neuroinflammatory diseases.

6.
Scand J Gastroenterol ; 56(11): 1286-1295, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34383611

RESUMEN

BACKGROUND: Environmental factors are strongly implicated in late-onset of inflammatory bowel disease. Here, we investigate whether high levels of perfluoroalkyl substances are associated with (1) late-onset inflammatory bowel disease, and (2) disturbances of the bile acid pool. We further explore the effect of the specific perfluoroalkyl substance perfluorooctanoic acid on intestinal barrier function in murine tissue. METHODS: Serum levels of perfluoroalkyl substances and bile acids were assessed by ultra-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer in matched samples from patients with ulcerative colitis (n = 20) and Crohn's disease (n = 20) diagnosed at the age of ≥55 years. Age and sex-matched blood donors (n = 20), were used as healthy controls. Ex vivo Ussing chamber experiments were performed to assess the effect of perfluorooctanoic acid on ileal and colonic murine tissue (n = 9). RESULTS: The total amount of perfluoroalkyl substances was significantly increased in patients with ulcerative colitis compared to healthy controls and patients with Crohn's disease (p < .05). Ex vivo exposure to perfluorooctanoic acid induced a significantly altered ileal and colonic barrier function. The distribution of bile acids, as well as the correlation pattern between (1) perfluoroalkyl substances and (2) bile acids, differed between patient and control groups. DISCUSSION: Our results demonstrate that perfluoroalkyl substances levels are increased in patients with late-onset ulcerative colitis and may contribute to the disease by inducing a dysfunctional intestinal barrier.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Fluorocarburos , Enfermedades Inflamatorias del Intestino , Animales , Colitis Ulcerosa/inducido químicamente , Fluorocarburos/toxicidad , Humanos , Ratones , Persona de Mediana Edad
7.
Brief Bioinform ; 22(2): 1531-1542, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32940335

RESUMEN

Deep learning (DL), an emerging area of investigation in the fields of machine learning and artificial intelligence, has markedly advanced over the past years. DL techniques are being applied to assist medical professionals and researchers in improving clinical diagnosis, disease prediction and drug discovery. It is expected that DL will help to provide actionable knowledge from a variety of 'big data', including metabolomics data. In this review, we discuss the applicability of DL to metabolomics, while presenting and discussing several examples from recent research. We emphasize the use of DL in tackling bottlenecks in metabolomics data acquisition, processing, metabolite identification, as well as in metabolic phenotyping and biomarker discovery. Finally, we discuss how DL is used in genome-scale metabolic modelling and in interpretation of metabolomics data. The DL-based approaches discussed here may assist computational biologists with the integration, prediction and drawing of statistical inference about biological outcomes, based on metabolomics data.


Asunto(s)
Aprendizaje Profundo , Metabolómica , Conjuntos de Datos como Asunto , Femenino , Humanos , Embarazo
8.
Artículo en Inglés | MEDLINE | ID: mdl-33278596

RESUMEN

Lipids have many important biological roles, such as energy storage sources, structural components of plasma membranes and as intermediates in metabolic and signaling pathways. Lipid metabolism is under tight homeostatic control, exhibiting spatial and dynamic complexity at multiple levels. Consequently, lipid-related disturbances play important roles in the pathogenesis of most of the common diseases. Lipidomics, defined as the study of lipidomes in biological systems, has emerged as a rapidly-growing field. Due to the chemical and functional diversity of lipids, the application of a systems biology approach is essential if one is to address lipid functionality at different physiological levels. In parallel with analytical advances to measure lipids in biological matrices, the field of computational lipidomics has been rapidly advancing, enabling modeling of lipidomes in their pathway, spatial and dynamic contexts. This review focuses on recent progress in systems biology approaches to study lipids in health and disease, with specific emphasis on methodological advances and biomedical applications.


Asunto(s)
Investigación Biomédica/métodos , Metabolismo de los Lípidos/fisiología , Lipidómica/métodos , Biología de Sistemas/métodos , Investigación Biomédica/tendencias , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica/tendencias , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/diagnóstico , Obesidad/metabolismo , Obesidad/terapia , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/terapia , Biología de Sistemas/tendencias
9.
Metabolites ; 10(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182712

RESUMEN

Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the "chemical exposome" (exposures to environmental chemicals), affect the host's metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.

10.
Environ Int ; 143: 105935, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32634666

RESUMEN

In the last decade, increasing incidence of type 1 diabetes (T1D) stabilized in Finland, a phenomenon that coincides with tighter regulation of perfluoroalkyl substances (PFAS). Here, we quantified PFAS to examine their effects, during pregnancy, on lipid and immune-related markers of T1D risk in children. In a mother-infant cohort (264 dyads), high PFAS exposure during pregnancy associated with decreased cord serum phospholipids and progression to T1D-associated islet autoantibodies in the offspring. This PFAS-lipid association appears exacerbated by increased human leukocyte antigen-conferred risk of T1D in infants. Exposure to a single PFAS compound or a mixture of organic pollutants in non-obese diabetic mice resulted in a lipid profile characterized by a similar decrease in phospholipids, a marked increase of lithocholic acid, and accelerated insulitis. Our findings suggest that PFAS exposure during pregnancy contributes to risk and pathogenesis of T1D in offspring.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Contaminantes Ambientales , Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Animales , Contaminantes Ambientales/toxicidad , Femenino , Finlandia/epidemiología , Fluorocarburos/toxicidad , Fosfolípidos , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología
11.
Brief Bioinform ; 21(6): 2052-2065, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31802105

RESUMEN

Differential splicing (DS) is a post-transcriptional biological process with critical, wide-ranging effects on a plethora of cellular activities and disease processes. To date, a number of computational approaches have been developed to identify and quantify differentially spliced genes from RNA-seq data, but a comprehensive intercomparison and appraisal of these approaches is currently lacking. In this study, we systematically evaluated 10 DS analysis tools for consistency and reproducibility, precision, recall and false discovery rate, agreement upon reported differentially spliced genes and functional enrichment. The tools were selected to represent the three different methodological categories: exon-based (DEXSeq, edgeR, JunctionSeq, limma), isoform-based (cuffdiff2, DiffSplice) and event-based methods (dSpliceType, MAJIQ, rMATS, SUPPA). Overall, all the exon-based methods and two event-based methods (MAJIQ and rMATS) scored well on the selected measures. Of the 10 tools tested, the exon-based methods performed generally better than the isoform-based and event-based methods. However, overall, the different data analysis tools performed strikingly differently across different data sets or numbers of samples.


Asunto(s)
Empalme del ARN , RNA-Seq , Análisis de Secuencia de ARN , Exones , Isoformas de Proteínas , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos
12.
PLoS One ; 13(7): e0199991, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975740

RESUMEN

Pathway analysis is a common approach in diverse biomedical studies, yet the currently-available pathway tools do not typically support the increasingly popular personalized analyses. Another weakness of the currently-available pathway methods is their inability to handle challenging data with only modest group-based effects compared to natural individual variation. In an effort to address these issues, this study presents a novel pathway method PASI (Pathway Analysis for Sample-level Information) and demonstrates its performance on complex diseases with different levels of group-based differences in gene expression. PASI is freely available as an R package.


Asunto(s)
Biología Computacional/métodos , Medicina de Precisión , Tamaño de la Muestra , Incertidumbre
13.
Cell Reprogram ; 16(1): 9-17, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24279882

RESUMEN

Recently, we showed a natural reprogramming process during infection with Mycobacterium leprae (ML), the causative organism of human leprosy. ML hijacks the notable plasticity of adult Schwann cells in the peripheral nervous system (PNS), bacteria's preferred nonimmune niche, to reprogram infected cells to progenitor/stem cell-like cells (pSLCs). Whereas ML appear to use this reprogramming process as a sophisticated bacterial strategy to spread infection to other tissues, understanding the mechanisms may shed new insights into the basic biology of cellular reprogramming and the development of new approaches for generating pSLC for therapeutic purposes as well as targeting bacterial infectious diseases at an early stage. Toward these goals, we extended our studies to identify other players that might be involved in this complex host cell reprogramming. Here we show that ML activates numerous immune-related genes mainly involved in innate immune responses and inflammation during early infection before downregulating Schwann cell lineage genes and reactivating developmental transcription factors. We validated these findings by demonstrating the ability of infected cells to secrete soluble immune factor proteins at early time points and their continued release during the course of reprogramming. By using time-lapse microscopy and a migration assay with reprogrammed Schwann cells (pSLCs) cultured with macrophages, we show that reprogrammed cells possess the ability to attract macrophages, providing evidence for a functional role of immune gene products during reprogramming. These findings suggest a potential role of innate immune response and the related signaling pathways in cellular reprogramming and the initiation of neuropathogenesis during ML infection.


Asunto(s)
Desdiferenciación Celular/inmunología , Regulación hacia Abajo/inmunología , Inmunidad Innata , Lepra/inmunología , Mycobacterium leprae/inmunología , Células de Schwann/inmunología , Animales , Humanos , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Lepra/patología , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos ICR , Células de Schwann/microbiología , Células de Schwann/patología
14.
F1000Res ; 2: 198, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358891

RESUMEN

BACKGROUND: Bacterial pathogens can manipulate or subvert host tissue cells to their advantage at different stages during infection, from initial colonization in primary host niches to dissemination. Recently, we have shown that Mycobacterium leprae (ML), the causative agent of human leprosy, reprogrammed its preferred host niche de-differentiated adult Schwann cells to progenitor/stem cell-like cells (pSLC) which appear to facilitate bacterial spread. Here, we studied how this cell fate change influences bacterial retention and transfer properties of Schwann cells before and after reprogramming. RESULTS: Using primary fibroblasts as bacterial recipient cells, we showed that non-reprogrammed Schwann cells, which preserve all Schwann cell lineage and differentiation markers, possess high bacterial retention capacity when co-cultured with skin fibroblasts; Schwann cells failed to transfer bacteria to fibroblasts at higher numbers even after co-culture for 5 days. In contrast, pSLCs, which are derived from the same Schwann cells but have lost Schwann cell lineage markers due to reprogramming, efficiently transferred bacteria to fibroblasts within 24 hours. CONCLUSIONS: ML-induced reprogramming converts lineage-committed Schwann cells with high bacterial retention capacity to a cell type with pSLC stage with effective bacterial transfer properties. We propose that such changes in cellular properties may be associated with the initial intracellular colonization, which requires long-term bacterial retention within Schwann cells, in order to spread the infection to other tissues, which entails efficient bacterial transfer capacity to cells like fibroblasts which are abundant in many tissues, thereby potentially maximizing bacterial dissemination. These data also suggest how pathogens could take advantage of multiple facets of host cell reprogramming according to their needs during infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA