Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; 20(11): e2304773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37936335

RESUMEN

Practical applications of synthetic self-propelled nano and microparticles for microrobotics, targeted drug delivery, and manipulation at the nanoscale are rapidly expanding. However, fabrication limitations often hinder progress, resulting in relatively simple shapes and limited functionality. Here, taking advantage of 3D nanoscale printing, chiral micropropellers powered by the hydrogen peroxide reduction reaction are fabricated. Due to their chirality, the propellers exhibit multifunctional behavior controlled by an applied magnetic field: spinning in place (loitering), directed migration in the prescribed direction, capture, and transport of polymer cargo particles. Design parameters of the propellers are optimized by computation modeling based on mesoscale molecular dynamics. It is predicted by computer simulations, and confirmed experimentally, that clockwise rotating propellers attract each other and counterclockwise repel. These results shed light on how chirality and shape optimization enhance the functionality of synthetic autonomous micromachines.

2.
Langmuir ; 33(37): 9416-9425, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28617602

RESUMEN

Platinum is state-of-the-art for fast electron transfer whereas carbon electrodes, which have semimetal electronic character, typically exhibit slow electron-transfer kinetics. But when we turn to practical electrochemical devices, we turn to carbon. To move energy devices and electro(bio)analytical measurements to a new performance curve requires improved electron-transfer rates at carbon. We approach this challenge with electroless deposition of disordered, nanoscopic anhydrous ruthenium oxide at pyrolytic carbon prepared by thermal decomposition of benzene (RuOx@CVD-C). We assessed traditionally fast, chloride-assisted ([Fe(CN)6]3-/4-) and notoriously slow ([Fe(H2O)6]3+/2+) electron-transfer redox probes at CVD-C and RuOx@CVD-C electrodes and calculated standard heterogeneous rate constants as a function of heat treatment to crystallize the disordered RuOx domains to their rutile form. For the fast electron-transfer probe, [Fe(CN)6]3-/4-, the rate increases by 34× over CVD-C once the RuOx is calcined to form crystalline rutile RuO2. For the classically outer-sphere [Fe(H2O)6]3+/2+, electron-transfer rates increase by an even greater degree over CVD-C (55×). The standard heterogeneous rate constant for each probe approaches that observed at Pt but does so using only minimal loadings of RuOx.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...