Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 206: 108936, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34965407

RESUMEN

Esketamine, the S-stereoisomer of (R,S)-ketamine was recently approved by drug agencies (FDA, EMA), as an antidepressant drug with a new mechanism of action. (R,S)-ketamine is a N-methyl-d-aspartate receptor (NMDA-R) antagonist putatively acting on GABAergic inhibitory synapses to increase excitatory synaptic glutamatergic neurotransmission. Unlike monoamine-based antidepressants, (R,S)-ketamine exhibits rapid and persistent antidepressant activity at subanesthetic doses in preclinical rodent models and in treatment-resistant depressed patients. Its major brain metabolite, (2R,6R)-hydroxynorketamine (HNK) is formed following (R,S)-ketamine metabolism by various cytochrome P450 enzymes (CYP) mainly activated in the liver depending on routes of administration [e.g., intravenous (largely used for a better bioavailability), intranasal spray, intracerebral, subcutaneous, intramuscular or oral]. Experimental or clinical studies suggest that (2R,6R)-HNK could be an antidepressant drug candidate. However, questions still remain regarding its molecular and cellular targets in the brain and its role in (R,S)-ketamine's fast-acting antidepressant effects. The purpose of the present review is: 1) to review (R,S)-ketamine pharmacokinetic properties in humans and rodents and its metabolism by CYP enzymes to form norketamine and HNK metabolites; 2) to provide a summary of preclinical strategies challenging the role of these metabolites by modifying (R,S)-ketamine metabolism, e.g., by administering a pre-treatment CYP inducers or inhibitors; 3) to analyze the influence of sex and age on CYP expression and (R,S)-ketamine metabolism. Importantly, this review describes (R,S)-ketamine pharmacodynamics and pharmacokinetics to alert clinicians about possible drug-drug interactions during a concomitant administration of (R,S)-ketamine and CYP inducers/inhibitors that could enhance or blunt, respectively, (R,S)-ketamine's therapeutic antidepressant efficacy in patients.


Asunto(s)
Antidepresivos/farmacocinética , Sistema Enzimático del Citocromo P-450/metabolismo , Ketamina/análogos & derivados , Animales , Humanos , Ketamina/farmacocinética
2.
Opt Express ; 27(16): 22352-22362, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31510530

RESUMEN

Ultra-compact miniaturized optical components for microendoscopic tools and miniaturized microscopes are required for minimally invasive imaging. Current microendoscopic technologies used for deep tissue imaging procedures are limited to a large diameter and/or low resolution due to manufacturing restrictions. We demonstrate a platform for miniaturization of an optical imaging system for microendoscopic applications with a resolution of 1 µm. We designed our probe using cascaded micro-lenses and waveguides (lensguide) to achieve a probe as small as 100 µm x 100 µm with a field of view of 60 µm in diameter. We demonstrate wide-field microscopy based on our polymeric probe fabricated using photolithography and a two-photon polymerization process.

3.
Front Mol Neurosci ; 11: 404, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459554

RESUMEN

Ketamine has been found to have rapid, long-lasting antidepressant effects in treatment-resistant (TR) patients with major depressive disorder (MDD). Recently, we have also shown that ketamine acts as a prophylactic to protect against the development of stress-induced depressive-like behavior in mice, indicating that a preventative treatment against mental illness using ketamine is possible. While there is significant investigation into ketamine's antidepressant mechanism of action, little is known about ketamine's underlying prophylactic mechanism. More specifically, whether ketamine's prophylactic action is molecularly similar to or divergent from its antidepressant action is entirely unknown. Here, we sought to characterize immunohistochemical signatures of cell populations governing ketamine's antidepressant and prophylactic effects. 129S6/SvEv mice were treated with saline (Sal) or ketamine (K) either before a social defeat (SD) stressor as a prophylactic, or after SD as an antidepressant, then subsequently assessed for depressive-like behavior. Post-fixed brains were processed for doublecortin (DCX), calretinin (CR) and calbindin (CB) expression. The number of DCX+ neurons in the dentate gyrus (DG) of the hippocampus (HPC) was not affected by prophylactic or antidepressant ketamine treatment, while the number of CR+ neurons in the ventral hilus increased with antidepressant ketamine under SD conditions. Moreover, antidepressant, but not prophylactic ketamine administration significantly altered CR and CB expression in the ventral HPC (vHPC). These data show that while antidepressant ketamine treatment mediates some of its effects via adult hippocampal markers, prophylactic ketamine administration does not, at least in 129S6/SvEv mice. These data suggest that long-lasting behavioral effects of prophylactic ketamine are independent of hippocampal DCX, CR and CB expression in stress-susceptible mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA