Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15379, 2024 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965282

RESUMEN

Venom is a remarkable innovation found across the animal kingdom, yet the evolutionary origins of venom systems in various groups, including spiders, remain enigmatic. Here, we investigated the organogenesis of the venom apparatus in the common house spider, Parasteatoda tepidariorum. The venom apparatus consists of a pair of secretory glands, each connected to an opening at the fang tip by a duct that runs through the chelicerae. We performed bulk RNA-seq to identify venom gland-specific markers and assayed their expression using RNA in situ hybridisation experiments on whole-mount time-series. These revealed that the gland primordium emerges during embryonic stage 13 at the chelicera tip, progresses proximally by the end of embryonic development and extends into the prosoma post-eclosion. The initiation of expression of an important toxin component in late postembryos marks the activation of venom-secreting cells. Our selected markers also exhibited distinct expression patterns in adult venom glands: sage and the toxin marker were expressed in the secretory epithelium, forkhead and sum-1 in the surrounding muscle layer, while Distal-less was predominantly expressed at the gland extremities. Our study provides the first comprehensive analysis of venom gland morphogenesis in spiders, offering key insights into their evolution and development.


Asunto(s)
Organogénesis , Venenos de Araña , Arañas , Animales , Arañas/embriología , Arañas/metabolismo , Venenos de Araña/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glándulas Exocrinas/metabolismo , Glándulas Exocrinas/embriología
2.
Evodevo ; 15(1): 5, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730509

RESUMEN

Spiders are a diverse order of chelicerates that diverged from other arthropods over 500 million years ago. Research on spider embryogenesis, particularly studies using the common house spider Parasteatoda tepidariorum, has made important contributions to understanding the evolution of animal development, including axis formation, segmentation, and patterning. However, we lack knowledge about the cells that build spider embryos, their gene expression profiles and fate. Single-cell transcriptomic analyses have been revolutionary in describing these complex landscapes of cellular genetics in a range of animals. Therefore, we carried out single-cell RNA sequencing of P. tepidariorum embryos at stages 7, 8 and 9, which encompass the establishment and patterning of the body plan, and initial differentiation of many tissues and organs. We identified 20 cell clusters, from 18.5 k cells, which were marked by many developmental toolkit genes, as well as a plethora of genes not previously investigated. We found differences in the cell cycle transcriptional signatures, suggestive of different proliferation dynamics, which related to distinctions between endodermal and some mesodermal clusters, compared with ectodermal clusters. We identified many Hox genes as markers of cell clusters, and Hox gene ohnologs were often present in different clusters. This provided additional evidence of sub- and/or neo-functionalisation of these important developmental genes after the whole genome duplication in an arachnopulmonate ancestor (spiders, scorpions, and related orders). We also examined the spatial expression of marker genes for each cluster to generate a comprehensive cell atlas of these embryonic stages. This revealed new insights into the cellular basis and genetic regulation of head patterning, hematopoiesis, limb development, gut development, and posterior segmentation. This atlas will serve as a platform for future analysis of spider cell specification and fate, and studying the evolution of these processes among animals at cellular resolution.

3.
Bioessays ; 46(5): e2300240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593308

RESUMEN

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Asunto(s)
Evolución Biológica , Insectos , Visión Ocular , Animales , Visión Ocular/fisiología , Insectos/fisiología , Insectos/genética , Ojo/anatomía & histología , Ojo Compuesto de los Artrópodos/fisiología , Ojo Compuesto de los Artrópodos/anatomía & histología
4.
BMC Biol ; 22(1): 67, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504308

RESUMEN

BACKGROUND: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/fisiología , Drosophila melanogaster/genética , Ojo/anatomía & histología , Especificidad de la Especie
5.
Curr Biol ; 34(5): 1114-1121.e7, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38309269

RESUMEN

The emergence and diversification of morphological novelties is a major feature of animal evolution.1,2,3,4,5,6,7,8,9 However, relatively little is known about the genetic basis of the evolution of novel structures and the mechanisms underlying their diversification. The epandrial posterior lobes of male genitalia are a novelty of particular Drosophila species.10,11,12,13 The lobes grasp the female ovipositor and insert between her abdominal tergites and, therefore, are important for copulation and species recognition.10,11,12,14,15,16,17 The posterior lobes likely evolved from co-option of a Hox-regulated gene network from the posterior spiracles10 and have since diversified in morphology in the D. simulans clade, in particular, over the last 240,000 years, driven by sexual selection.18,19,20,21 The genetic basis of this diversification is polygenic but, to the best of our knowledge, none of the causative genes have been identified.22,23,24,25,26,27,28,29,30 Identifying the genes underlying the diversification of these secondary sexual structures is essential to understanding the evolutionary impact on copulation and species recognition. Here, we show that Sox21b negatively regulates posterior lobe size. This is consistent with expanded Sox21b expression in D. mauritiana, which develops smaller posterior lobes than D. simulans. We tested this by generating reciprocal hemizygotes and confirmed that changes in Sox21b underlie posterior lobe evolution between these species. Furthermore, we found that posterior lobe size differences caused by the species-specific allele of Sox21b significantly affect copulation duration. Taken together, our study reveals the genetic basis for the sexual-selection-driven diversification of a novel morphological structure and its functional impact on copulatory behavior.


Asunto(s)
Evolución Biológica , Drosophila , Animales , Femenino , Masculino , Copulación/fisiología , Drosophila/fisiología , Genitales Masculinos/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...