RESUMEN
OBJECTIVE: Pharmacy students with substantial educational debt are at risk for excessive workloads, burnout, and clinical errors. During the COVID-19 pandemic, policies addressing economic hardships for all student debt borrowers included temporary suspension of monthly payments and 0% interest during the pause. This study aimed to understand student-level factors regarding student debt from the lived experiences of current pharmacy students and aimed to understand how current pharmacy students view temporary loan relief. METHODS: We used semi-structured interviews of pharmacy students across 4 years of progression in their pharmacy program to better understand student experiences with debt, different factors that may influence the impact of student debt on short-term and long-term outcomes for students, and student perspectives on debt relief policies and potential solutions. Our thematic analysis was grounded in existing evidence and a conceptual framework, while also allowing codes to emerge directly from the data. RESULTS: A total of 20 pharmacy students were interviewed with a median student debt of $77,000, with debt amounts ranging from $0 to $209,000. Students described what mediating factors influenced their experiences, the influence of student debt on clinician burnout, and other outcomes impacted by student debt. Six overarching themes emerged relevant to current students: student debt influences education and career decisions, debt is risky given the saturated pharmacy market, debt is an accepted burden, debt will inhibit starting a life, the COVID-19 loan relief is revealing, and early financial education is needed. CONCLUSION: Pharmacy students burdened with debt described a variety of different experiences and attitudes toward that debt and provided their perspectives on how student debt influences short-term education and career decisions. While students accept the trade-off of debt for their education as an inevitable burden, reported coping mechanisms and strategies shared suggest some solutions may be available to ameliorate this burden.
Asunto(s)
Educación en Farmacia , Estudiantes de Farmacia , Humanos , Pandemias , Apoyo a la Formación Profesional , Selección de Profesión , Agotamiento PsicológicoRESUMEN
BACKGROUND: There is a renewed interest in lower field magnetic resonance imaging (MRI) systems for cardiovascular magnetic resonance (CMR), due to their favorable physical properties, reduced costs, and increased accessibility to patients with implants. We sought to assess the diagnostic capabilities of high-performance low-field (0.55 T) CMR imaging for quantification of right and left ventricular volumes and systolic function in both healthy subjects and patients referred for clinical CMR. METHODS: Sixty-five subjects underwent paired exams at 1.5 T using a clinical CMR scanner and using an identical CMR system modified to operate at 0.55 T. Volumetric coverage of the right ventricle (RV) and left ventricles (LV) was obtained using either a breath-held cine balanced steady-state free-precession acquisition or a motion-corrected free-breathing re-binned cine acquisition. Bland-Altman analysis was used to compare LV and RV end-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF), and LV mass. Diagnostic confidence was scored on a Likert-type ordinal scale by blinded readers. RESULTS: There were no significant differences in LV and RV EDV between the two scanners (e.g., LVEDV: p = 0.77, bias = 0.40 mL, correlation coefficient = 0.99; RVEDV: p = 0.17, bias = - 1.6 mL, correlation coefficient = 0.98), and regional wall motion abnormality scoring was similar (kappa 0.99). Blood-myocardium contrast-to-noise ratio (CNR) at 0.55 T was 48 ± 7% of the 1.5 T CNR, and contrast was sufficient for endocardial segmentation in all cases. Diagnostic confidence of images was scored as "good" to "excellent" for the two field strengths in the majority of studies. CONCLUSION: A high-performance 0.55 T system offers good bSSFP CMR image quality, and quantification of biventricular volumes and systolic function that is comparable to 1.5 T in patients. TRIAL REGISTRATION: Clinicaltrials.gov NCT03331380, NCT03581318.
Asunto(s)
Cardiomiopatías/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Imagen por Resonancia Cinemagnética/métodos , Función Ventricular Izquierda , Función Ventricular Derecha , Adulto , Cardiomiopatías/fisiopatología , Estudios de Casos y Controles , Femenino , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Volumen Sistólico , SístoleRESUMEN
Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.
Asunto(s)
Cateterismo , Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Adulto , Artefactos , Cateterismo Cardíaco/instrumentación , Medios de Contraste , Diseño de Equipo , Femenino , Humanos , Imagen por Resonancia Magnética Intervencional/instrumentación , Metales , Relación Señal-RuidoRESUMEN
BACKGROUND: The hallmark of heart failure is increased blood volume. Quantitative blood volume measures are not conveniently available and are not tested in heart failure management. We assess ferumoxytol, a marketed parenteral iron supplement having a long intravascular half-life, to measure the blood volume with cardiovascular magnetic resonance (CMR). METHODS: Swine were administered 0.7 mg/kg ferumoxytol and blood pool T1 was measured repeatedly for an hour to characterize contrast agent extraction and subsequent effect on Vblood estimates. We compared CMR blood volume with a standard carbon monoxide rebreathing method. We then evaluated three abbreviated acquisition protocols for bias and precision. RESULTS: Mean plasma volume estimated by ferumoxytol was 61.9 ± 4.3 ml/kg. After adjustment for hematocrit the resultant mean blood volume was 88.1 ± 9.4 ml/kg, which agreed with carbon monoxide measures (91.1 ± 18.9 ml/kg). Repeated measurements yielded a coefficient of variation of 6.9%, and Bland-Altman repeatability coefficient of 14%. The blood volume estimates with abbreviated protocols yielded small biases (mean differences between 0.01-0.06 L) and strong correlations (r2 between 0.97-0.99) to the reference values indicating clinical feasibility. CONCLUSIONS: In this swine model, ferumoxytol CMR accurately measures plasma volume, and with correction for hematocrit, blood volume. Abbreviated protocols can be added to diagnostic CMR examination for heart failure within 8 min.
Asunto(s)
Determinación del Volumen Sanguíneo/métodos , Volumen Sanguíneo , Medios de Contraste/administración & dosificación , Óxido Ferrosoférrico/administración & dosificación , Imagen por Resonancia Magnética , Animales , Monóxido de Carbono/administración & dosificación , Modelos Animales , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sus scrofaRESUMEN
BACKGROUND: Cardiovascular magnetic resonance (CMR) fluoroscopy allows for simultaneous measurement of cardiac function, flow and chamber pressure during diagnostic heart catheterization. To date, commercial metallic guidewires were considered contraindicated during CMR fluoroscopy due to concerns over radiofrequency (RF)-induced heating. The inability to use metallic guidewires hampers catheter navigation in patients with challenging anatomy. Here we use low specific absorption rate (SAR) imaging from gradient echo spiral acquisitions and a commercial nitinol guidewire for CMR fluoroscopy right heart catheterization in patients. METHODS: The low-SAR imaging protocol used a reduced flip angle gradient echo acquisition (10° vs 45°) and a longer repetition time (TR) spiral readout (10 ms vs 2.98 ms). Temperature was measured in vitro in the ASTM 2182 gel phantom and post-mortem animal experiments to ensure freedom from heating with the selected guidewire (150 cm × 0.035â³ angled-tip nitinol Terumo Glidewire). Seven patients underwent CMR fluoroscopy catheterization. Time to enter each chamber (superior vena cava, main pulmonary artery, and each branch pulmonary artery) was recorded and device visibility and confidence in catheter and guidewire position were scored on a Likert-type scale. RESULTS: Negligible heating (< 0.07°C) was observed under all in vitro conditions using this guidewire and imaging approach. In patients, chamber entry was successful in 100% of attempts with a guidewire compared to 94% without a guidewire, with failures to reach the branch pulmonary arteries. Time-to-enter each chamber was similar (p=NS) for the two approaches. The guidewire imparted useful catheter shaft conspicuity and enabled interactive modification of catheter shaft stiffness, however, the guidewire tip visibility was poor. CONCLUSIONS: Under specific conditions, trained operators can apply low-SAR imaging and using a specific fully-insulated metallic nitinol guidewire (150 cm × 0.035" Terumo Glidewire) to augment clinical CMR fluoroscopy right heart catheterization. TRIAL REGISTRATION: Clinicaltrials.gov NCT03152773 , registered May 15, 2017.