Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
IEEE Trans Med Imaging ; PP2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517719

RESUMEN

We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.

2.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37293064

RESUMEN

We seek to develop techniques for high-resolution imaging of the tree shrew retina for visualizing and parameterizing retinal ganglion cell (RGC) axon bundles in vivo. We applied visible-light optical coherence tomography fibergraphy (vis-OCTF) and temporal speckle averaging (TSA) to visualize individual RGC axon bundles in the tree shrew retina. For the first time, we quantified individual RGC bundle width, height, and cross-sectional area and applied vis-OCT angiography (vis-OCTA) to visualize the retinal microvasculature in tree shrews. Throughout the retina, as the distance from the optic nerve head (ONH) increased from 0.5 mm to 2.5 mm, bundle width increased by 30%, height decreased by 67%, and cross-sectional area decreased by 36%. We also showed that axon bundles become vertically elongated as they converge toward the ONH. Ex vivo confocal microscopy of retinal flat-mounts immunostained with Tuj1 confirmed our in vivo vis-OCTF findings.

3.
Transl Vis Sci Technol ; 12(5): 10, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163286

RESUMEN

Purpose: We developed a new analytic tool based on visible-light optical coherence tomography fibergraphy (vis-OCTF) to longitudinally track individual axon bundle transformation as a new in vivo biomarker for retinal ganglion cell (RGC) damage. Methods: After acute optic nerve crush injury (ONC) in mice, we analyzed four parameters: lateral bundle width, axial bundle height, cross-sectional area, and the shape of individual bundles. We next correlated the morphological changes in RGC axon bundles with RGC soma loss. Results: We showed that axon bundles became wider and taller at three days post ONC (pONC), which correlated with about 15% RGC soma loss. At six days pONC, axon bundles showed a significant reduction in lateral width and cross-sectional area, followed by a reduction in bundle height at nine days pONC. Bundle shrinking at nine days pONC correlated with about 68% RGC soma loss. Both experimental and simulated results suggested that the cross-sectional area of individual RGC axon bundles is more sensitive than bundle width and height to indicate RGC soma loss. Conclusions: This study is the first to track and quantify individual RGC axon bundles in vivo after ONC injury. Translational Relevance: Recognizing RGC loss at its earliest stage is crucial for disease diagnosis and treatment. However, current clinical methods to detect the functional and structural changes in the inner retina are not sensitive enough to directly assess RGC health. In this study, we developed vis-OCTF-based parameters to track RGC damage, making possible to establishing a quantifiable biomarker for glaucoma.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Ratones , Animales , Células Ganglionares de la Retina/fisiología , Tomografía de Coherencia Óptica , Axones , Traumatismos del Nervio Óptico/diagnóstico por imagen , Biomarcadores
4.
eNeuro ; 9(6)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36414413

RESUMEN

Decision-making is an essential cognitive process by which we interact with the external world. However, attempts to understand the neural mechanisms of decision-making are limited by the current available animal models and the technologies that can be applied to them. Here, we build on the renewed interest in using tree shrews (Tupaia belangeri) in vision research and provide strong support for them as a model for studying visual perceptual decision-making. Tree shrews learned very quickly to perform a two-alternative forced choice contrast discrimination task, and they exhibited differences in response time distributions depending on the reward and punishment structure of the task. Specifically, they made occasional fast guesses when incorrect responses are punished by a constant increase in the interval between trials. This behavior was suppressed when faster incorrect responses were discouraged by longer intertrial intervals. By fitting the behavioral data with two variants of racing diffusion decision models, we found that the between-trial delay affected decision-making by modulating the drift rate of a time accumulator. Our results thus provide support for the existence of an internal process that is independent of the evidence accumulation in decision-making and lay a foundation for future mechanistic studies of perceptual decision-making using tree shrews.


Asunto(s)
Investigación , Tupaiidae , Animales , Modelos Animales de Enfermedad , Aprendizaje , Castigo
5.
Exp Eye Res ; 218: 109012, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35245513

RESUMEN

Aniridia is a panocular condition characterized by impaired eye development and vision, which is mainly due to the haploinsufficiency of the paired-box-6 (PAX6) gene. Like what is seen in aniridia patients, Pax6-deficient mice Pax6Sey-Neu/+ exhibit a varied degree of ocular damage and impaired vision. Our previous studies showed that these phenotypes were partially rescued by PD0325901, a mitogen-activated protein kinase kinase (MEK or MAP2K) inhibitor. In this study, we assessed the long-term efficacy of PD0325901 treatment in retinal health and visual behavior. At about one year after the postnatal treatment with PD0325901, Pax6Sey-Neu/+ mice showed robust improvements in retina size and visual acuity, and the elevated intraocular pressure (IOP) was also alleviated, compared to age-matched mice treated with vehicles only. Moreover, the Pax6Sey-Neu/+ eyes showed disorganized retinal ganglion cell (RGC) axon bundles and retinal layers, which we termed as hotspots. We found that the PD treatment reduced the number and size of hotspots in the Pax6Sey-Neu/+ retinas. Taken together, our results suggest that PD0325901 may serve as an efficacious intervention in protecting retina and visual function in aniridia-afflicted subjects.


Asunto(s)
Aniridia , Factores de Transcripción Paired Box , Animales , Aniridia/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Haploinsuficiencia , Proteínas de Homeodominio/genética , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Factor de Transcripción PAX6/genética , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Retina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA