Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(4): e17248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581126

RESUMEN

Both human populations and marine biodiversity are concentrated along coastlines, with growing conservation interest in how these ecosystems can survive intense anthropogenic impacts. Tropical urban centres provide valuable research opportunities because these megacities are often adjacent to mega-diverse coral reef systems. The Pearl River Delta is a prime exemplar, as it encompasses one of the most densely populated and impacted regions in the world and is located just northwest of the Coral Triangle. However, the spatial and taxonomic complexity of this biodiversity, most of which is small, cryptic in habitat and poorly known, make comparative analyses challenging. We deployed standardized settlement structures at seven sites differing in the intensity of human impacts and used COI metabarcoding to characterize benthic biodiversity, with a focus on metazoans. We found a total of 7184 OTUs, with an average of 665 OTUs per sampling unit; these numbers exceed those observed in many previous studies using comparable methods, despite the location of our study in an urbanized environment. Beta diversity was also high, with 52% of the OTUs found at just one site. As expected, we found that the sites close to point sources of pollution had substantially lower diversity (44% less) relative to sites bathed in less polluted oceanic waters. However, the polluted sites contributed substantially to the total animal diversity of the region, with 25% of all OTUs occurring only within polluted sites. Further analysis of Arthropoda, Annelida and Mollusca showed that phylogenetic clustering within a site was common, suggesting that environmental filtering reduced biodiversity to a subset of lineages present within the region, a pattern that was most pronounced in polluted sites and for the Arthropoda. The water quality gradients surrounding the PRD highlight the unique role of in situ studies for understanding the impacts of complex urbanization pressures on biodiversity.


Asunto(s)
Antozoos , Ecosistema , Animales , Humanos , Filogenia , Biodiversidad , Arrecifes de Coral
2.
PeerJ ; 11: e15023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151292

RESUMEN

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Asunto(s)
Arrecifes de Coral , Dinoflagelados , Variación Genética , Dinoflagelados/clasificación , Dinoflagelados/genética , Filogenia , Consenso , Antozoos , Simbiosis
3.
Microbiome ; 11(1): 89, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101227

RESUMEN

BACKGROUND: Coral meta-organisms consist of the coral, and its associated Symbiodiniaceae (dinoflagellate algae), bacteria, and other microbes. Corals can acquire photosynthates from Symbiodiniaceae, whilst Symbiodiniaceae uses metabolites from corals. Prokaryotic microbes provide Symbiodiniaceae with nutrients and support the resilience of corals as meta-organisms. Eutrophication is a major cause of coral reef degradation; however, its effects on the transcriptomic response of coral meta-organisms remain unclear, particularly for prokaryotic microbes associated with corals in the larval stage. To understand acclimation of the coral meta-organism to elevated nitrate conditions, we analyzed the physiological and transcriptomic responses of Pocillopora damicornis larvae, an ecologically important scleractinian coral, after 5 days of exposure to elevated nitrate levels (5, 10, 20, and 40 µM). RESULTS: The major differentially expressed transcripts in coral, Symbiodiniaceae, and prokaryotic microbes included those related to development, stress response, and transport. The development of Symbiodiniaceae was not affected in the 5 and 20 µM groups but was downregulated in the 10 and 40 µM groups. In contrast, prokaryotic microbe development was upregulated in the 10 and 40 µM groups and downregulated in the 5 and 20 µM groups. Meanwhile, coral larval development was less downregulated in the 10 and 40 µM groups than in the 5 and 20 µM groups. In addition, multiple larval, Symbiodiniaceae, and prokaryotic transcripts were significantly correlated with each other. The core transcripts in correlation networks were related to development, nutrient metabolism, and transport. A generalized linear mixed model, using least absolute shrinkage and selection operator, demonstrated that the Symbiodiniaceae could both benefit and cost coral larval development. Furthermore, the most significantly correlated prokaryotic transcripts maintained negative correlations with the physiological functions of Symbiodiniaceae. CONCLUSIONS: Results suggested that Symbiodiniaceae tended to retain more nutrients under elevated nitrate concentrations, thereby shifting the coral-algal association from mutualism towards parasitism. Prokaryotic microbes provided Symbiodiniaceae with essential nutrients and may control Symbiodiniaceae growth through competition, whereby prokaryotes can also restore coral larval development inhibited by Symbiodiniaceae overgrowth. Video Abstract.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/microbiología , Nitratos/metabolismo , Larva , Arrecifes de Coral , Dinoflagelados/fisiología , Simbiosis , Transcriptoma
4.
Microbiome ; 10(1): 192, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36336686

RESUMEN

BACKGROUND: Symbionts provide a variety of reproductive, nutritional, and defensive resources to their hosts, but those resources can vary depending on symbiont community composition. As genetic techniques open our eyes to the breadth of symbiont diversity within myriad microbiomes, symbiosis research has begun to consider what ecological mechanisms affect the identity and relative abundance of symbiont species and how this community structure impacts resource exchange among partners. Here, we manipulated the in hospite density and relative ratio of two species of coral endosymbionts (Symbiodinium microadriaticum and Breviolum minutum) and used stable isotope enrichment to trace nutrient exchange with the host, Briareum asbestinum. RESULTS: The patterns of uptake and translocation of carbon and nitrogen varied with both density and ratio of symbionts. Once a density threshold was reached, carbon acquisition decreased with increasing proportions of S. microadriaticum. In hosts dominated by B. minutum, nitrogen uptake was density independent and intermediate. Conversely, for those corals dominated by S. microadriaticum, nitrogen uptake decreased as densities increased, and as a result, these hosts had the overall highest (at low density) and lowest (at high density) nitrogen enrichment. CONCLUSIONS: Our findings show that the uptake and sharing of nutrients was strongly dependent on both the density of symbionts within the host, as well as which symbiont species was dominant. Together, these complex interactive effects suggest that host regulation and the repression of in hospite symbiont competition can ultimately lead to a more productive mutualism. Video Abstract.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Simbiosis/fisiología , Dinoflagelados/fisiología , Nitrógeno , Carbono , Nutrientes , Arrecifes de Coral
5.
Ecol Evol ; 12(9): e9312, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36188517

RESUMEN

The symbiotic relationship between dinoflagellate algae in the family Symbiodiniaceae and scleractinian corals forms the base of the tropical reef ecosystem. In scleractinian corals, recruits acquire symbionts either "vertically" from the maternal colony or initially lack symbionts and acquire them "horizontally" from the environment. Regardless of the mode of acquisition, coral species and individual colonies harbor only a subset of the highly diverse complex of species/taxa within the Symbiodiniaceae. This suggests a genetic basis for specificity, but local environmental conditions and/or symbiont availability may also play a role in determining which symbionts within the Symbiodiniaceae are initially taken up by the host. To address the relative importance of genetic and environmental drivers of symbiont uptake/establishment, we examined the acquisition of these dinoflagellate symbionts in one to three-month-old recruits of Orbicella faveolata to compare symbiont types present in recruits to those of parental populations versus co-occurring adults in their destination reef. Variation in chloroplast 23S ribosomal DNA and in three polymorphic microsatellite loci was examined. We found that, in general, symbiont communities within adult colonies differed between reefs, suggesting that endemism is common among symbiont populations of O. faveolata on a local scale. Among recruits, initial symbiont acquisition was selective. O. faveolata recruits only acquired a subset of locally available symbionts, and these generally did not reflect symbiont populations in adults at either the parental or the outplant reef. Instead, symbiont communities within new recruits at a given outplant site and region tended to be similar to each other, regardless of parental source population. These results suggest temporal variation in the local symbiont source pool, although other possible drivers behind the distinct difference between symbionts within O. faveolata adults and new generations of recruits may include different ontogenetic requirements and/or reduced host selectivity in early ontogeny.

6.
ISME J ; 14(10): 2424-2432, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32518247

RESUMEN

In the face of global warming and unprecedented coral bleaching, a new avenue of research is focused on relatively rare algal symbionts and their ability to confer thermal tolerance to their host by association. Yet, thermal tolerance is just one of many physiological attributes inherent to the diversity of symbiodinians, a result of millions of years of competition and niche partitioning. Here, we revealed that competition among cocultured symbiodinians alters nutrient assimilation and compound production with species-specific responses. For Cladocopium goreaui, a species ubiquitous within stable coral associations, temperature stress increased sensitivity to competition eliciting a shift toward investment in cell replication, i.e., putative niche exploitation. Meanwhile, competition led Durusdinium trenchii, a thermally tolerant "background" symbiodinian, to divert resources from immediate growth to storage. As such, competition may be driving the dominance of C. goreaui outside of temperature stress, the destabilization of symbioses under thermal stress, the repopulation of coral tissues by D. trenchii following bleaching, and ultimately undermine the efficacy of symbiont turnover as an adaptive mechanism.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Arrecifes de Coral , Calor , Simbiosis
7.
Ecol Evol ; 9(22): 12767-12778, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31788212

RESUMEN

Host species often support a genetically diverse guild of symbionts, the identity and performance of which can determine holobiont fitness under particular environmental conditions. These symbiont communities are structured by a complex set of potential interactions, both positive and negative, between the host and symbionts and among symbionts. In reef-building corals, stable associations with specific symbiont species are common, and we hypothesize that this is partly due to ecological mechanisms, such as succession and competition, which drive patterns of symbiont winnowing in the initial colonization of new generations of coral recruits. We tested this hypothesis using the experimental framework of the de Wit replacement series and found that competitive interactions occurred among symbionts which were characterized by unique ecological strategies. Aposymbiotic octocoral recruits within high- and low-light environments were inoculated with one of three Symbiodiniaceae species as monocultures or with cross-paired mixtures, and we tracked symbiont uptake using quantitative genetic assays. Priority effects, in which early colonizers excluded competitive dominants, were evidenced under low light, but these early opportunistic species were later succeeded by competitive dominants. Under high light, a more consistent competitive hierarchy was established in which competitive dominants outgrew and limited the abundance of others. These findings provide insight into mechanisms of microbial community organization and symbiosis breakdown and recovery. Furthermore, transitions in competitive outcomes across spatial and temporal environmental variation may improve lifetime host fitness.

8.
Proc Biol Sci ; 286(1907): 20190882, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31311470

RESUMEN

Concomitant to the decline of tropical corals caused by increasing global sea temperatures is the potential removal of barriers to species range expansions into subtropical and temperate habitats. In these habitats, species must tolerate lower annual mean temperature, wider annual temperature ranges and lower minimum temperatures. To understand ecophysiological traits that will impact geographical range boundaries, we monitored populations of five coral species within a marginal habitat and used a year of in situ measures to model thermal performance of vital host, symbiont and holobiont physiology. Metabolic responses to temperature revealed two acclimatization strategies: peak productivity occurring at annual midpoint temperatures (4-6°C lower than tropical counterparts), or at annual maxima. Modelled relationships between temperature and P:R were compared to a year of daily subtropical sea temperatures and revealed that the relatively short time spent at any one temperature, limited optimal performance of all strategies to approximately half the days of the year. Thus, while subtropical corals can adjust their physiology to persist through seasonal lows, seasonal variation seems to be the key factor limiting coral productivity. This constraint on rapid reef accretion within subtropical environments provides insight into the global distribution of future coral reefs and their ecosystem services.


Asunto(s)
Cambio Climático , Arrecifes de Coral , Aclimatación/fisiología , Animales , Antozoos/fisiología , Hong Kong , Calor , Modelos Biológicos , Especificidad de la Especie
9.
Microbiome ; 7(1): 104, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307536

RESUMEN

BACKGROUND: Coastal marine environments are one of the most productive ecosystems on Earth. However, anthropogenic impacts exert significant pressure on coastal marine biodiversity, contributing to functional shifts in microbial communities and human health risk factors. However, relatively little is known about the impact of eutrophication-human-derived nutrient pollution-on the marine microbial biosphere. RESULTS: Here, we tested the hypothesis that benthic microbial diversity and function varies along a pollution gradient, with a focus on human pathogens and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG annotation revealed that zinc, lead, total volatile solids, and ammonia nitrogen were correlated with microbial diversity and function. We propose several microbes, including Planctomycetes and sulfate-reducing microbes as candidates to reflect pollution concentration. Annotation of antibiotic resistance genes showed that the highest abundance of efflux pumps was found at the most polluted site, corroborating the relationship between pollution and human health risk factors. This result suggests that sediments at polluted sites harbor microbes with a higher capacity to reduce intracellular levels of antibiotics, heavy metals, or other environmental contaminants. CONCLUSIONS: Our findings suggest a correlation between pollution and the marine sediment microbiome and provide insight into the role of high-turnover microbial communities as well as potential pathogenic organisms as real-time indicators of water quality, with implications for human health and demonstrate the inner functional shifts contributed by the microcommunities.


Asunto(s)
Bacterias/clasificación , Farmacorresistencia Microbiana/genética , Contaminación Ambiental , Sedimentos Geológicos/microbiología , Metagenoma , Microbiota , Antiinfecciosos/farmacología , China , Eutrofización , Metagenómica
10.
PLoS One ; 12(11): e0187707, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29186143

RESUMEN

Many dinoflagellate microalgae of the genus Symbiodinium form successful symbioses with a large group of metazoans and selected protists. Yet knowledge of growth kinetics of these endosymbionts and their ecological and evolutionary implications is limited. We used a Bayesian biphasic generalized logistic model to estimate key parameters of the growth of five strains of cultured Symbiodinium, S. microadriaticum (cp-type A194; strain 04-503), S. microadriaticum (cp-type A194; strain CassKB8), S. minutum (cp-type B184; strain Mf 1.05b.01.SCI.01), S. psygmophilum (cp-type B224; strain Mf 11.05b.01) and S. trenchii (cp-type D206; strain Mf 2.2b), grown in four different combinations of temperature and light. Growth kinetics varied among Symbiodinium strains and across treatments. Biphasic growth was especially evident for S. minutum and S. psygmophilum across all treatments. Monophasic growth was more common when final asymptotic densities were relatively low (~ 200 million cells ml-1). All species tended to grow faster and / or reached a higher asymptote at 26°C than at 18°C. The fastest growth was exhibited by S. minutum, with an approximate four-fold increase in estimated cell density after 60 days. The strongest effect of light was seen in S. trenchii, in which increasing light levels resulted in a decrease in initial growth rate, and an increase in asymptotic density, time when growth rate was at its maximum, final growth rate, and maximum growth rate. Results suggest that Symbiodinium species have different photokinetic and thermal optima, which may affect their growth-related nutritional physiology and allow them to modify their response to environmental changes.


Asunto(s)
Dinoflagelados/crecimiento & desarrollo , Luz , Biología Marina , Temperatura
11.
J Phycol ; 52(6): 1114-1124, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27690269

RESUMEN

For many coral species, the obligate association with phylogenetically diverse algal endosymbiont species is dynamic in time and space. Here, we used controlled laboratory inoculations of newly settled, aposymbiotic corals (Orbicella faveolata) with two cultured species of algal symbiont (Symbiodinium microadriaticum and S. minutum) to examine the role of symbiont identity on growth, survivorship, and thermal tolerance of the coral holobiont. We evaluated these data in the context of Symbiodinium photophysiology for 9 months post-settlement and also during a 5-d period of elevated temperatures Our data show that recruits that were inoculated with S. minutum grew significantly slower than those inoculated with S. microadriaticum (occasionally co-occurring with S. minutum), but that there was no difference in survivorship of O. faveolata polyps infected with Symbiodinium. However, photophysiological metrics (∆Fv/F'm, the efficiency with which available light is used to drive photosynthesis and α, the maximum light utilization coefficient) were higher in those slower growing recruits containing S. minutum. These findings suggest that light use (i.e., photophysiology) and carbon acquisition by the coral host (i.e., host growth) are decoupled, but did not distinguish the source of this difference. Neither Symbiodinium treatment demonstrated a significant negative effect of a 5-d exposure to temperatures as high as 32°C under low light conditions similar to those measured at settlement habitats.


Asunto(s)
Antozoos/fisiología , Dinoflagelados/fisiología , Simbiosis , Termotolerancia , Animales , Antozoos/crecimiento & desarrollo , Florida , Especificidad de la Especie
12.
Mol Ecol ; 23(13): 3330-40, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24863571

RESUMEN

Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan-algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co-evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan-algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host-symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.


Asunto(s)
Antozoos/genética , Dinoflagelados/genética , Ecosistema , Variación Genética , Simbiosis , Animales , Teorema de Bayes , Región del Caribe , Núcleo Celular/genética , Arrecifes de Coral , ADN de Cloroplastos/genética , ADN Espaciador Ribosómico/genética , Genotipo , Repeticiones de Microsatélite , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Especificidad de la Especie
13.
Oecologia ; 169(4): 1095-103, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22374368

RESUMEN

The majority of our understanding of mutualisms comes from studies of pairwise interactions. However, many hosts support mutualist guilds, and interactions among mutualists make the prediction of aggregate effects difficult. Here, we apply a factorial experiment to interactions of 'guard' crustaceans that defend their coral host from seastar predators. Predation was reduced by the presence of mutualists (15% reduction in predation frequency and 45% in volume of coral consumed). The frequency of attacks with both mutualists was lower than with a single species, but it did not differ significantly from the expected frequency of independent effects. In contrast, the combined defensive efficacy of both mutualist species reduced the volume of coral tissue lost by 73%, significantly more than the 38% reduction expected from independent defensive efforts, suggesting the existence of a cooperative synergy in defensive behaviors of 'guard' crustaceans. These emergent 'multiple defender effects' are statistically and ecologically analogous to the emergent concept of 'multiple predator effects' known from the predation literature.


Asunto(s)
Antozoos , Conducta Animal , Crustáceos/fisiología , Conducta Predatoria , Animales , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA