Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain Imaging Behav ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538876

RESUMEN

Previous studies have shown that engagement in even a single session of exercise can improve cognitive performance in the short term. However, the underlying physiological mechanisms contributing to this effect are still being studied. Recently, with improvements to advanced quantitative neuroimaging techniques, brain tissue mechanical properties can be sensitively and noninvasively measured with magnetic resonance elastography (MRE) and regional brain mechanical properties have been shown to reflect individual cognitive performance. Here we assess brain mechanical properties before and immediately after engagement in a high-intensity interval training (HIIT) regimen, as well as one-hour post-exercise. We find that immediately after exercise, subjects in the HIIT group had an average global brain stiffness decrease of 4.2% (p < 0.001), and an average brain damping ratio increase of 3.1% (p = 0.002). In contrast, control participants who did not engage in exercise showed no significant change over time in either stiffness or damping ratio. Changes in brain mechanical properties with exercise appeared to be regionally dependent, with the hippocampus decreasing in stiffness by 10.4%. We also found that one-hour after exercise, brain mechanical properties returned to initial baseline values. The magnitude of changes to brain mechanical properties also correlated with improvements in reaction time on executive control tasks (Eriksen Flanker and Stroop) with exercise. Understanding the neural changes that arise in response to exercise may inform potential mechanisms behind improvements to cognitive performance with acute exercise.

2.
Pediatr Radiol ; 53(13): 2712-2722, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794174

RESUMEN

Magnetic resonance elastography is a relatively new, rapidly evolving quantitative magnetic resonance imaging technique which can be used for mapping the viscoelastic mechanical properties of soft tissues. MR elastography measurements are akin to manual palpation but with the advantages of both being quantitative and being useful for regions which are not available for palpation, such as the human brain. MR elastography is noninvasive, well tolerated, and complements standard radiological and histopathological studies by providing in vivo measurements that reflect tissue microstructural integrity. While brain MR elastography studies in adults are becoming frequent, published studies on the utility of MR elastography in children are sparse. In this review, we have summarized the major scientific principles and recent clinical applications of brain MR elastography in diagnostic neuroscience and discuss avenues for impact in assessing the pediatric brain.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedades del Sistema Nervioso , Adulto , Humanos , Niño , Diagnóstico por Imagen de Elasticidad/métodos , Cirrosis Hepática/patología , Imagen por Resonancia Magnética/métodos , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Enfermedades del Sistema Nervioso/patología , Encéfalo/diagnóstico por imagen
4.
bioRxiv ; 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36824781

RESUMEN

Brain age is a quantitative estimate to explain an individual's structural and functional brain measurements relative to the overall population and is particularly valuable in describing differences related to developmental or neurodegenerative pathology. Accurately inferring brain age from brain imaging data requires sophisticated models that capture the underlying age-related brain changes. Magnetic resonance elastography (MRE) is a phase contrast MRI technology that uses external palpations to measure brain mechanical properties. Mechanical property measures of viscoelastic shear stiffness and damping ratio have been found to change across the entire life span and to reflect brain health due to neurodegenerative diseases and even individual differences in cognitive function. Here we develop and train a multi-modal 3D convolutional neural network (CNN) to model the relationship between age and whole brain mechanical properties. After training, the network maps the measurements and other inputs to a brain age prediction. We found high performance using the 3D maps of various mechanical properties to predict brain age. Stiffness maps alone were able to predict ages of the test group subjects with a mean absolute error (MAE) of 3.76 years, which is comparable to single inputs of damping ratio (MAE: 3.82) and outperforms single input of volume (MAE: 4.60). Combining stiffness and volume in a multimodal approach performed the best, with an MAE of 3.60 years, whereas including damping ratio worsened model performance. Our results reflect previous MRE literature that had demonstrated that stiffness is more strongly related to chronological age than damping ratio. This machine learning model provides the first prediction of brain age from brain biomechanical data-an advancement towards sensitively describing brain integrity differences in individuals with neuropathology.

5.
Neuroimage Clin ; 37: 103327, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36682312

RESUMEN

Hippocampal subfields (HCsf) are brain regions important for memory function that are vulnerable to decline with amnestic mild cognitive impairment (aMCI), which is often a preclinical stage of Alzheimer's disease. Studies in aMCI patients often assess HCsf tissue integrity using measures of volume, which has little specificity to microstructure and pathology. We use magnetic resonance elastography (MRE) to examine the viscoelastic mechanical properties of HCsf tissue, which is related to structural integrity, and sensitively detect differences in older adults with aMCI compared to an age-matched control group. Group comparisons revealed HCsf viscoelasticity is differentially affected in aMCI, with CA1-CA2 and DG-CA3 exhibiting lower stiffness and CA1-CA2 exhibiting higher damping ratio, both indicating poorer tissue integrity in aMCI. Including HCsf stiffness in a logistic regression improves classification of aMCI beyond measures of volume alone. Additionally, lower DG-CA3 stiffness predicted aMCI status regardless of DG-CA3 volume. These findings showcase the benefit of using MRE in detecting subtle pathological tissue changes in individuals with aMCI via the HCsf particularly affected in the disease.


Asunto(s)
Disfunción Cognitiva , Diagnóstico por Imagen de Elasticidad , Humanos , Anciano , Imagen por Resonancia Magnética , Hipocampo/patología , Encéfalo/diagnóstico por imagen
6.
J Mech Behav Biomed Mater ; 138: 105586, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36516544

RESUMEN

Traumatic brain injury (TBI) is a major health concern affecting both military and civilian populations. Despite notable advances in TBI research in recent years, there remains a significant gap in linking the impulsive loadings from a blast or a blunt impact to the clinical injury patterns observed in TBI. Synthetic head models or phantoms can be used to establish this link as they can be constructed with geometry, anatomy, and material properties that match the human brain, and can be used as an alternative to animal models. This study presents one such phantom called the Anthropomorphic Neurologic Gyrencephalic Unified Standard (ANGUS) phantom, which is an idealized gyrencephalic brain phantom composed of polyacrylamide gel. Here we mechanically characterized the ANGUS phantom using tagged magnetic resonance imaging (MRI) and magnetic resonance elastography (MRE), and then compared the outcomes to data obtained in healthy volunteers. The direct comparison between the phantom's response and the data from a cohort of in vivo human subjects demonstrate that the ANGUS phantom may be an appropriate model for bulk tissue response and gyral dynamics of the human brain under small amplitude linear impulses. However, the phantom's response differs from that of the in vivo human brain under rotational impacts, suggesting avenues for future improvements to the phantom.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Animales , Humanos , Cabeza/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen
7.
Artículo en Inglés | MEDLINE | ID: mdl-36340644

RESUMEN

Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, µ (range: 2.57 - 3.02 kPa), shear anisotropy, ϕ (range: -0.026 - 0.164), and tensile anisotropy, ζ (range: 0.559 - 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain.

8.
J Neurosci ; 42(42): 7957-7968, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261271

RESUMEN

Aging and neurodegenerative diseases lead to decline in thinking and memory ability. The subfields of the hippocampus (HCsf) play important roles in memory formation and recall. Imaging techniques sensitive to the underlying HCsf tissue microstructure can reveal unique structure-function associations and their vulnerability in aging and disease. The goal of this study was to use magnetic resonance elastography (MRE), a noninvasive MR imaging-based technique that can quantitatively image the viscoelastic mechanical properties of tissue to determine the associations of HCsf stiffness with different cognitive domains across the lifespan. Eighty-eight adult participants completed the study (age 23-81 years, male/female 36/51), in which we aimed to determine which HCsf regions most strongly correlated with different memory performance outcomes and if viscoelasticity of specific HCsf regions mediated the relationship between age and performance. Our results revealed that both interference cost on a verbal memory task and relational memory task performance were significantly related to cornu ammonis 1-2 (CA1-CA2) stiffness (p = 0.018 and p = 0.011, respectively), with CA1-CA2 stiffness significantly mediating the relationship between age and interference cost performance (p = 0.031). There were also significant associations between delayed free verbal recall performance and stiffness of both the dentate gyrus-cornu ammonis 3 (DG-CA3; p = 0.016) and subiculum (SUB; p = 0.032) regions. This further exemplifies the functional specialization of HCsf in declarative memory and the potential use of MRE measures as clinical biomarkers in assessing brain health in aging and disease.SIGNIFICANCE STATEMENT Hippocampal subfields are cytoarchitecturally unique structures involved in distinct aspects of memory processing. Magnetic resonance elastography is a technique that can noninvasively image tissue viscoelastic mechanical properties, potentially serving as sensitive biomarkers of aging and neurodegeneration related to functional outcomes. High-resolution in vivo imaging has invigorated interest in determining subfield functional specialization and their differential vulnerability in aging and disease. Applying MRE to probe subfield-specific cognitive correlates will indicate that measures of subfield stiffness can determine the integrity of structures supporting specific domains of memory performance. These findings will further validate our high-resolution MRE method and support the potential use of subfield stiffness measures as clinical biomarkers in classifying aging and disease states.


Asunto(s)
Hipocampo , Memoria , Adulto , Humanos , Femenino , Masculino , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Pruebas Neuropsicológicas , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Cognición , Recuerdo Mental , Imagen por Resonancia Magnética/métodos
9.
Neuroimage ; 263: 119590, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030061

RESUMEN

Magnetic resonance elastography (MRE) is a phase contrast MRI technique which uses external palpation to create maps of brain mechanical properties noninvasively and in vivo. These mechanical properties are sensitive to tissue microstructure and reflect tissue integrity. MRE has been used extensively to study aging and neurodegeneration, and to assess individual cognitive differences in adults, but little is known about mechanical properties of the pediatric brain. Here we use high-resolution MRE imaging in participants of ages ranging from childhood to adulthood to understand brain mechanical properties across brain maturation. We find that brain mechanical properties differ considerably between childhood and adulthood, and that neuroanatomical subregions have differing maturational trajectories. Overall, we observe lower brain stiffness and greater brain damping ratio with increasing age from 5 to 35 years. Gray and white matter change differently during maturation, with larger changes occurring in gray matter for both stiffness and damping ratio. We also found that subregions of cortical and subcortical gray matter change differently, with the caudate and thalamus changing the most with age in both stiffness and damping ratio, while cortical subregions have different relationships with age, even between neighboring regions. Understanding how brain mechanical properties mature using high-resolution MRE will allow for a deeper understanding of the neural substrates supporting brain function at this age and can inform future studies of atypical maturation.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Sustancia Blanca , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Preescolar , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Envejecimiento , Diagnóstico por Imagen de Elasticidad/métodos
10.
Dev Neuropsychol ; 47(5): 258-272, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35938379

RESUMEN

The quality of language that children hear in their environment is associated with the development of language-related brain regions, in turn promoting vocabulary knowledge. Although informative, it remains unknown how these environmental influences alter the structure of neural tissue and subsequent vocabulary outcomes. The current study uses magnetic resonance elastography (MRE) to examine how children's language environments underlie brain tissue mechanical properties, characterized as brain tissue stiffness and damping ratio, and promote vocabulary knowledge. Twenty-five children, ages 5-7, had their audio and video recorded while engaging in a play session with their parents. Children also completed the Picture Vocabulary Task (from NIH Toolbox) and participated in an MRI, where MRE and anatomical images were acquired. Higher quality input was associated with greater stiffness in the bilateral inferior frontal gyrus and right superior temporal gyrus, whereas greater vocabulary knowledge was associated with lower damping ratio in the right inferior frontal gyrus. These findings suggest changes in neural tissue composition are sensitive to malleable aspects of the environment, whereas tissue organization is more strongly associated with vocabulary outcome. Notably, these associations were independent of maternal education, suggesting more proximal measures of a child's environment may be the source of differences in neural tissue structure underlying variability in vocabulary outcomes.


Asunto(s)
Lenguaje , Vocabulario , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Humanos , Desarrollo del Lenguaje , Imagen por Resonancia Magnética
11.
Magn Reson Med ; 88(4): 1659-1672, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35649188

RESUMEN

PURPOSE: MR elastography (MRE) is a technique to characterize brain mechanical properties in vivo. Due to the need to capture tissue deformation in multiple directions over time, MRE is an inherently long acquisition, which limits achievable resolution and use in challenging populations. The purpose of this work is to develop a method for accelerating MRE acquisition by using low-rank image reconstruction to exploit inherent spatiotemporal correlations in MRE data. THEORY AND METHODS: The proposed MRE sampling and reconstruction method, OSCILLATE (Observing Spatiotemporal Correlations for Imaging with Low-rank Leveraged Acceleration in Turbo Elastography), involves alternating which k-space points are sampled between each repetition by a reduction factor, ROSC. Using a predetermined temporal basis from a low-resolution navigator in a joint low-rank image reconstruction, all images can be accurately reconstructed from a reduced amount of k-space data. RESULTS: Decomposition of MRE displacement data demonstrated that, on average, 96.1% of all energy from an MRE dataset is captured at rank L = 12 (reduced from a full rank of 24). Retrospectively undersampling data with ROSC  = 2 and reconstructing at low-rank (L = 12) yields highly accurate stiffness maps with voxel-wise error of 5.8% ± 0.7%. Prospectively undersampled data at ROSC  = 2 were successfully reconstructed without loss of material property map fidelity, with average global stiffness error of 1.0% ± 0.7% compared to fully sampled data. CONCLUSIONS: OSCILLATE produces whole-brain MRE data at 2 mm isotropic resolution in 1 min 48 s.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
12.
Med Image Anal ; 78: 102432, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358836

RESUMEN

The white matter tracts of brain tissue consist of highly-aligned, myelinated fibers; white matter is structurally anisotropic and is expected to exhibit anisotropic mechanical behavior. In vivo mechanical properties of tissue can be imaged using magnetic resonance elastography (MRE). MRE can detect and monitor natural and disease processes that affect tissue structure; however, most MRE inversion algorithms assume locally homogenous properties and/or isotropic behavior, which can cause artifacts in white matter regions. A heterogeneous, model-based transverse isotropic implementation of a subzone-based nonlinear inversion (TI-NLI) is demonstrated. TI-NLI reconstructs accurate maps of the shear modulus, damping ratio, shear anisotropy, and tensile anisotropy of in vivo brain tissue using standard MRE motion measurements and fiber directions estimated from diffusion tensor imaging (DTI). TI-NLI accuracy was investigated with using synthetic data in both controlled and realistic settings: excellent quantitative and spatial accuracy was observed and cross-talk between estimated parameters was minimal. Ten repeated, in vivo, MRE scans acquired from a healthy subject were co-registered to demonstrate repeatability of the technique. Good resolution of anatomical structures and bilateral symmetry were evident in MRE images of all mechanical property types. Repeatability was similar to isotropic MRE methods and well within the limits required for clinical success. TI-NLI MRE is a promising new technique for clinical research into anisotropic tissues such as the brain and muscle.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Sustancia Blanca , Anisotropía , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen de Difusión Tensora , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
13.
Magn Reson Med ; 87(3): 1313-1328, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687069

RESUMEN

PURPOSE: Magnetic resonance elastography (MRE) uses phase-contrast MRI to generate mechanical property maps of the in vivo brain through imaging of tissue deformation from induced mechanical vibration. The mechanical property estimation process in MRE can be susceptible to noise from physiological and mechanical sources encoded in the phase, which is expected to be highly correlated. This correlated noise has yet to be characterized in brain MRE, and its effects on mechanical property estimates computed using inversion algorithms are undetermined. METHODS: To characterize the effects of signal noise in MRE, we conducted 3 experiments quantifying (1) physiomechanical sources of signal noise, (2) physiological noise because of cardiac-induced movement, and (3) impact of correlated noise on mechanical property estimates. We use a correlation length metric to estimate the extent that correlated signal persists in MRE images and demonstrate the effect of correlated noise on property estimates through simulations. RESULTS: We found that both physiological noise and vibration noise were greater than image noise and were spatially correlated across all subjects. Added physiological and vibration noise to simulated data resulted in property maps with higher error than equivalent levels of Gaussian noise. CONCLUSION: Our work provides the foundation to understand contributors to brain MRE data quality and provides recommendations for future work to correct for signal noise in MRE.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Vibración
14.
NMR Biomed ; 35(1): e4616, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34542196

RESUMEN

Off-resonance related geometric distortion can impact quantitative MRI techniques, such as magnetic resonance elastography (MRE), and result in errors to these otherwise sensitive metrics of brain health. MRE is a phase contrast technique to determine the mechanical properties of tissue by imaging shear wave displacements and estimating tissue stiffness through inverse solution of Navier's equation. In this study, we systematically examined the quantitative effects of distortion and corresponding correction approaches on MRE measurements through a series of simulations, phantom models, and in vivo brain experiments. We studied two different k-space trajectories, echo-planar imaging and spiral, and we determined that readout time, off-resonance gradient strength, and the combination of readout direction and off-resonance gradient direction, impact the estimated mechanical properties. Images were also processed through traditional distortion correction pipelines, and we found that each of the correction mechanisms works well for reducing stiffness errors, but are limited in cases of very large distortion. The ability of MRE to detect subtle changes to neural tissue health relies on accurate, artifact-free imaging, and thus off-resonance related geometric distortion must be considered when designing sequences and protocols by limiting readout time and applying correction where appropriate.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Adulto , Encéfalo/fisiología , Femenino , Humanos , Masculino , Fantasmas de Imagen , Adulto Joven
15.
Neuroimage ; 215: 116850, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32298793

RESUMEN

Heightened risk-taking tendencies during adolescence have been hypothesized to be attributable to physiological differences of maturation in key brain regions. The socioemotional system (e.g., nucleus accumbens), which is instrumental in reward response, shows a relatively earlier development trajectory than the cognitive control system (e.g., medial prefrontal cortex), which regulates impulse response. This developmental imbalance between heightened reward seeking and immature cognitive control potentially makes adolescents more susceptible to engaging in risky activities. Here, we assess brain structure in the socioemotional and cognitive control systems through viscoelastic stiffness measured with magnetic resonance elastography (MRE) and volumetry, as well as risk-taking tendencies measured using two experimental tasks in 40 adolescents (mean age â€‹= â€‹13.4 years old). MRE measures of regional brain stiffness reflect brain health and development via myelin content and glial matrix makeup, and have been shown to be highly sensitive to cognitive processes as compared to measures of regional brain volume and diffusion weighted imaging metrics. We find here that the viscoelastic and volumetric differences between the nucleus accumbens and the prefrontal cortex are correlated with increased risk-taking behavior in adolescents. These differences in development between the two brain systems can be used as an indicator of those adolescents who are more prone to real world risky activities and a useful measure for characterizing response to intervention.


Asunto(s)
Conducta del Adolescente/psicología , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Recompensa , Asunción de Riesgos , Adolescente , Conducta del Adolescente/fisiología , Encéfalo/fisiología , Niño , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos
16.
J Child Neurol ; 35(7): 463-471, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202191

RESUMEN

Cerebral palsy is a neurodevelopmental movement disorder that affects coordination and balance. Therapeutic treatments for balance deficiencies in this population primarily focus on the musculoskeletal system, whereas the neural basis of balance impairment is often overlooked. Magnetic resonance elastography (MRE) is an emerging technique that has the ability to sensitively assess microstructural brain health through in vivo measurements of neural tissue stiffness. Using magnetic resonance elastography, we have previously measured significantly softer grey matter in children with cerebral palsy as compared with typically developing children. To further allow magnetic resonance elastography to be a clinically useful tool in rehabilitation, we aim to understand how brain stiffness in children with cerebral palsy is related to dynamic balance reaction performance as measured through anterior and posterior single-stepping thresholds, defined as the standing perturbation magnitudes that elicit anterior or posterior recovery steps. We found that global brain stiffness is significantly correlated with posterior stepping thresholds (P = .024) such that higher brain stiffness was related to better balance recovery. We further identified specific regions of the brain where stiffness was correlated with stepping thresholds, including the precentral and postcentral gyri, the precuneus and cuneus, and the superior temporal gyrus. Identifying brain regions affected in cerebral palsy and related to balance impairment can help inform rehabilitation strategies targeting neuroplasticity to improve motor function.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Parálisis Cerebral/fisiopatología , Diagnóstico por Imagen de Elasticidad/métodos , Equilibrio Postural , Niño , Preescolar , Femenino , Humanos , Masculino
17.
J Mech Behav Biomed Mater ; 97: 65-73, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31100487

RESUMEN

Agarose phantoms are one type of phantom commonly used in developing in vivo brain magnetic resonance elastography (MRE) sequences because they are inexpensive and easy to work with, store, and dispose of; however, protocols for creating agarose phantoms are non-standardized and often result in inconsistent phantoms with significant variability in mechanical properties. Many magnetic resonance imaging (MRI) and ultrasound studies use phantoms, but often these phantoms are not tailored for desired mechanical properties and as such are too stiff or not mechanically consistent enough to be used in MRE. In this work, we conducted a systematic study of agarose phantom creation parameters to identify those factors that are most conducive to producing mechanically consistent agarose phantoms for MRE research. We found that cooling rate and liquid temperature affected phantom homogeneity. Phantom stiffness is affected by agar concentration (quadratically), by final liquid temperature and salt content in phantoms, and by the interaction of these two metrics each with stir rate. We captured and quantified the implied relationships with a regression model that can be used to estimate stiffness of resulting phantoms. Additionally, we characterized repeatability, stability over time, impact on MR signal parameters, and differences in agar gel microstructure. This protocol and regression model should prove beneficial in future MRE development studies that use phantoms to determine stiffness measurement accuracy.


Asunto(s)
Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad , Imagen por Resonancia Magnética , Fantasmas de Imagen , Sefarosa/química , Agar/química , Algoritmos , Humanos , Ensayo de Materiales , Movimiento (Física) , Análisis de Regresión , Sales (Química)/química , Temperatura
18.
Neuroimage Clin ; 22: 101750, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30870734

RESUMEN

Cerebral palsy (CP) is a neurodevelopmental disorder that results in functional motor impairment and disability in children. CP is characterized by neural injury though many children do not exhibit brain lesions or damage. Advanced structural MRI measures may be more sensitively related to clinical outcomes in this population. Magnetic resonance elastography (MRE) measures the viscoelastic mechanical properties of brain tissue, which vary extensively between normal and disease states, and we hypothesized that the viscoelasticity of brain tissue is reduced in children with CP. Using a global region-of-interest-based analysis, we found that the stiffness of the cerebral gray matter in children with CP is significantly lower than in typically developing (TD) children, while the damping ratio of gray matter is significantly higher in CP. A voxel-wise analysis confirmed this finding, and additionally found stiffness and damping ratio differences between groups in regions of white matter. These results indicate that there is a difference in brain tissue health in children with CP that is quantifiable through stiffness and damping ratio measured with MRE. Understanding brain tissue mechanics in the pediatric CP population may aid in the diagnosis and evaluation of CP.


Asunto(s)
Parálisis Cerebral/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Niño , Preescolar , Humanos
19.
Dev Cogn Neurosci ; 34: 27-33, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29906788

RESUMEN

Viscoelastic mechanical properties of the in vivo human brain, measured noninvasively with magnetic resonance elastography (MRE), have recently been shown to be affected by aging and neurological disease, as well as relate to performance on cognitive tasks in adults. The demonstrated sensitivity of brain mechanical properties to neural tissue integrity make them an attractive target for examining the developing brain; however, to date, MRE studies on children are lacking. In this work, we characterized global and regional brain stiffness and damping ratio in a sample of 40 adolescents aged 12-14 years, including the lobes of the cerebrum and subcortical gray matter structures. We also compared the properties of the adolescent brain to the healthy adult brain. Temporal and parietal cerebral lobes were softer in adolescents compared to adults. We found that of subcortical gray matter structures, the caudate and the putamen were significantly stiffer in adolescents, and that the hippocampus and amygdala were significantly less stiff than all other subcortical structures. This study provides the first detailed characterization of adolescent brain viscoelasticity and provides baseline data to be used in studying development and pathophysiology.


Asunto(s)
Encéfalo/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA