Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 107: 110684, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37080443

RESUMEN

In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1ß2 (LTα1ß2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1ß (IL-1ß) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1ß and LTα1ß2. In contrast, knockdown of IKKß using siRNA or pharmacological inhibition of IKKß activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1ß induced phosphorylation of p100 however, the response to LTα1ß2 was virtually abolished. Surprisingly IL-1ß also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1ß2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1ß.


Asunto(s)
Quinasa I-kappa B , Interleucina-1beta , FN-kappa B , Transducción de Señal , Humanos , Línea Celular Tumoral , Quinasa I-kappa B/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo
2.
Biochem Soc Trans ; 48(6): 2525-2537, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33242065

RESUMEN

Protease-activated receptor-2 (PAR2) has been extensively studied since its discovery in the mid-1990. Despite the advances in understanding PAR2 pharmacology, it has taken almost 25 years for the first inhibitor to reach clinical trials, and so far, no PAR2 antagonist has been approved for human use. Research has employed classical approaches to develop a wide array of PAR2 agonists and antagonists, consisting of peptides, peptoids and antibodies to name a few, with a surge in patent applications over this period. Recent breakthroughs in PAR2 structure determination has provided a unique insight into proposed PAR2 ligand binding sites. Publication of the first crystal structures of PAR2 resolved in complex with two novel non-peptide small molecule antagonists (AZ8838 and AZ3451) revealed two distinct binding pockets, originally presumed to be allosteric sites, with a PAR2 antibody (Fab3949) used to block tethered ligand engagement with the peptide-binding domain of the receptor. Further studies have proposed orthosteric site occupancy for AZ8838 as a competitive antagonist. One company has taken the first PAR2 antibody (MEDI0618) into phase I clinical trial (NCT04198558). While this first-in-human trial is at the early stages of the assessment of safety, other research into the structural characterisation of PAR2 is still ongoing in an attempt to identify new ways to target receptor activity. This review will focus on the development of novel PAR2 modulators developed to date, with an emphasis placed upon the advances made in the pharmacological targeting of PAR2 activity as a strategy to limit chronic inflammatory disease.


Asunto(s)
Diseño de Fármacos , Receptor PAR-2/metabolismo , Sitio Alostérico , Animales , Anticuerpos/química , Química Farmacéutica/métodos , Ensayos Clínicos como Asunto , Humanos , Inflamación , Concentración 50 Inhibidora , Ligandos , Seguridad del Paciente , Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptor PAR-2/antagonistas & inhibidores
3.
Appl Spectrosc ; 73(6): 591-600, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30990068

RESUMEN

This work describes the use of a laser-induced breakdown spectroscopy (LIBS) system to conduct macroscopic elemental mapping of uranium and iron on the exterior surface and interior center cross-section of surrogate nuclear debris for the first time. The results suggest that similar LIBS systems could be packaged for use as an effective instrument for screening samples during collection activities in the field or to conduct process control measurements during the production of debris surrogates. The technique focuses on the mitigation of chemical and physical matrix effects of four uranium atomic emission lines, relatively free of interferences and of good analytical value. At a spatial resolution of 0.5 mm, a material fractionation pattern in the surrogate debris is identified and discussed in terms of constituent melting temperatures and thermal gradients experienced.

4.
RMD Open ; 5(1): e000711, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713718

RESUMEN

Objectives: We have previously shown mitogen-activated protein kinase phosphatase 2 (MKP-2) to be a key regulator of proinflammatory cytokines in macrophages. In the study presented here, we investigated the role of MKP-2 in inflammatory arthritis with a particular focus on neutrophils. Methods: To achieve this, we subjected MKP-2 deficient and wild type mice to collagen antibody induced arthritis, an innate model of arthritis, and determined disease pathology. To further our investigation, we depleted neutrophils in a prophylactic and therapeutic fashion. Last, we used chemotaxis assays to analyse the impact of MKP-2 deletion on neutrophil migration. Results: MKP-2-/- mice showed a significant increase in disease pathology linked to elevated levels of proarthritic cytokines and chemokines TNF-α, IL-6 and MCP-1 in comparison to wild type controls. This phenotype is prevented or abolished after administration of neutrophil depleting antibody prior or after onset of disease, respectively. While MCP-1 levels were not affected, neutrophil depletion diminished TNF-α and reduced IL-6, thus linking these cytokines to neutrophils. In vivo imaging showed that MKP-2-/- mice had an increased influx of neutrophils into affected joints, which was higher and potentially prolonged than in wild type animals. Furthermore, using chemotaxis assays we revealed that MKP-2 deficient neutrophils migrate faster towards a Leukotriene B4 gradient. This process correlated with a reduced phosphorylation of ERK in MKP-2-/- neutrophils. Conclusions: This is the first study to show a protective role for MKP-2 in inflammatory arthritis.


Asunto(s)
Artritis/etiología , Proteínas Tirosina Fosfatasas/genética , Animales , Artritis/metabolismo , Artritis/patología , Artritis Experimental , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Estudios de Asociación Genética , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Imagen Óptica/métodos , Proteínas Tirosina Fosfatasas/metabolismo
5.
Cell Signal ; 51: 59-71, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30076967

RESUMEN

Previous research from our laboratory has demonstrated a novel phenomenon whereby GPCRs play a role in inhibiting cytokine-mediated c-Jun N-terminal kinase (JNK) signalling. So far this novel phenomenon seems to have been vastly overlooked, with little research in the area. Therefore, in this study we explored this further; by assessing the potential of P2YRs to mediate inhibition of cytokine-mediated JNK signalling and related functional outcomes in human endothelial cells. We utilised primary endothelial cells, and employed the use of endogenous activators of P2YRs and well characterised pharmacological inhibitors, to assess signalling parameters mediated by P2YRs, Interleukin-1ß (IL-1ß), TNFα and JNK. Activation of P2YRs with adenosine tri-phosphate (ATP) resulted in a time- and concentration-dependent inhibition of IL-1ß-mediated phosphorylation of JNK and associated kinase activity. The effect was specific for cytokine-mediated JNK signalling, as ATP was without effect on JNK induced by other non-specific activators (e.g. sorbitol, anisomycin), nor effective against other MAPK pathways such as p38 and the canonical NFκB cascade. Pharmacological studies demonstrated a role for the P2Y11 receptor in mediating this effect, but not the P2Y1 nor the adenosine receptors (A1, A2A, A2B & A3). The novel Gαq/11 inhibitor YM254890 and a protein kinase A (PKA) inhibitor H89 both partially reversed ATP-mediated inhibition of IL-1ß-stimulated JNK indicating involvement of both Gαq/11 and Gαs mediated pathways. ATP also partially reversed IL-1ß-mediated induction of cyclo­oxygenase-2 (COX-2) and E-selectin. Collectively, these studies indicate the potential for activation of purinergic receptors to protect the endothelium from inflammatory driven JNK activation and may be a new target for inflammatory disease therapy.


Asunto(s)
Vasos Coronarios , Células Endoteliales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2/metabolismo , Adenosina Trifosfato/metabolismo , Células Cultivadas , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Med Chem ; 60(16): 7043-7066, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737909

RESUMEN

IKKß plays a central role in the canonical NF-kB pathway, which has been extensively characterized. The role of IKKα in the noncanonical NF-kB pathway, and indeed in the canonical pathway as a complex with IKKß, is less well understood. One major reason for this is the absence of chemical tools designed as selective inhibitors for IKKα over IKKß. Herein, we report for the first time a series of novel, potent, and selective inhibitors of IKKα. We demonstrate effective target engagement and selectivity with IKKα in U2OS cells through inhibition of IKKα-driven p100 phosphorylation in the noncanonical NF-kB pathway without affecting IKKß-dependent IKappa-Bα loss in the canonical pathway. These compounds represent the first chemical tools that can be used to further characterize the role of IKKα in cellular signaling, to dissect this from IKKß and to validate it in its own right as a target in inflammatory diseases.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Biomarcadores Farmacológicos/metabolismo , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Quinasa I-kappa B/química , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Subunidad p52 de NF-kappa B/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Pirroles/síntesis química , Pirroles/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
7.
Biochem Soc Trans ; 44(2): 606-12, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068977

RESUMEN

Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.


Asunto(s)
Inhibidores de Agregación Plaquetaria/farmacología , Receptores Proteinasa-Activados/efectos de los fármacos , Humanos , Hidrólisis , Lactonas/farmacología , Lactonas/uso terapéutico , Ligandos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Receptores Proteinasa-Activados/metabolismo , Transducción de Señal , Trombosis/tratamiento farmacológico
8.
Curr Drug Targets ; 17(16): 1861-1870, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26648078

RESUMEN

Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) whose activation requires the cleavage of the N-terminus by a serine protease. However, recent evidence reveals that alternative routes of activation also occur, that PARs signal via multiple pathways and that pathway activation is activator- dependent. Given our increased understanding of PAR function both under physiological and pathophysiological conditions, one aspect that has remained constant is the link between PAR2 and inflammation. PAR2 is expressed in immune cells of both the innate and adaptive immune system and has been shown to play a role in several peripheral inflammatory conditions. PAR2 is similarly expressed on astrocytes and microglia within the CNS and its activation is either protective or detrimental to CNS function depending on the conditions or disease state investigated. With a clear similarity between the function of PAR2 on both immune cells and CNS glial cells, here we have reviewed their roles in both these systems. We suggest that the recent development of novel PAR2 modulators, including those that show biased signalling, will further increase our understanding of PAR2 function and the development of potential therapeutics for CNS disorders in which inflammation is proposed to play a role.


Asunto(s)
Astrocitos/metabolismo , Enfermedades del Sistema Nervioso Central/inmunología , Neuroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Inmunidad Adaptativa , Animales , Humanos , Sistema Inmunológico/metabolismo , Inmunidad Innata , Receptor PAR-2 , Transducción de Señal
9.
Ann Rheum Dis ; 75(11): 1989-1997, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26698846

RESUMEN

OBJECTIVE: Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. METHODS: OA was induced in wild-type (WT) and PAR2-deficient (PAR2-/-) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2-/- mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. RESULTS: Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2-/- mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2-/- mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2-/- mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. CONCLUSIONS: This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes.


Asunto(s)
Artritis Experimental/patología , Huesos/patología , Cartílago Articular/patología , Osteoartritis/patología , Receptor PAR-2/metabolismo , Animales , Artralgia/etiología , Artralgia/patología , Artritis Experimental/etiología , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Osteoartritis/etiología , Osteocitos/metabolismo
10.
Int J Environ Anal Chem ; 96(1): 15-37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-33746339

RESUMEN

Portable instruments based on X-Ray Fluorescence Spectrometry (XRF) have the potential to assist in field-based studies provided the data produced are reliable. In this study, we evaluate the performance of two different types of XRF instrument (XOS prototype, and Thermo Niton XL3t). These two XRF analyzers were evaluated in a laboratory setting, and data were reported for 17 elements (As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, Sr, Ti, V, and Zn). Samples analyzed (n=38) included ethnic herbal medicine products (HMP), ethnic spices (ES), and cosmetic products (CP). Comparison analyses were carried out using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). In general, results reported for Cd, Cu and Pb by the XOS prototype analyzer, and based on the instrument's non-metal mode, were negatively biased (5 % to 95 %) compared to ICP-OES. In contrast, results reported for Pb, As, Cd, Cu and Zn by the Niton, based on using the soil mode, were positively biased, in some instances (Cd) by up to 4 orders of magnitude. While the sensitivity of both instruments was insufficient for reliably "quantifying" toxic elements below 15 mg/kg, XRF was still capable of positively "detecting" many elements at the low single digit mg/kg levels. However, for semi-quantification estimates of contaminants at higher levels, and with limited sample preparation, both XRF instruments were deemed fit for the purpose. This study demonstrates that modern XRF instrumentation is valuable for characterizing the elemental content of food, cosmetic, and medicinal products. The technology is particularly useful for rapidly screening large numbers of products (100s per day) in the field, and quickly identifying those that may contain potentially hazardous levels of toxic elements. Toxic elements can be confirmed by examining the raw spectrum, and the limitations of factory-based calibration are generally manageable for field-based studies.

11.
J Toxicol Environ Health A ; 75(21): 1253-68, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23030652

RESUMEN

Assessment of trace elements such as Cu, Zn, and Se in patients with neurodegenerative disease, such as Alzheimer's (AD) and Parkinson's disease (PD), may be useful in etiologic studies and in assessing the risk of developing these conditions. A prototype point-of-care (POC) instrument based on monochromatic x-ray fluorescence (M-XRF) was assembled and evaluated for the determination of Cu, Zn, and Se in whole blood, plasma, and urine. The prototype instrument was validated using certified reference materials for Cu and Zn in serum/plasma, and the reported bias and relative imprecision were <10%. The M-XRF prototype performance was further assessed using human specimens collected from AD and PD subjects, and was found to be satisfactory (<20% bias) for monitoring Cu and Zn levels in plasma and whole blood. However, the prototype M-XRF sensitivity was not sufficient for quantifying Cu, Zn, or Se in urine. Nonetheless, while validating the prototype instrument, body fluids (whole blood, plasma, and urine) were collected from 19 AD patients, 23 PD patients, and 24 controls specifically for trace element analysis using well-validated methods based on inductively coupled plasma mass spectrometry (ICP-MS). This limited biomonitoring study provided robust data for up to 16 elements including Sb, As, Ba, Cd, Cs, Co, Cr, Cu, Hg, Pb, Mo, Se, Tl, Sn, Zn, and U in plasma, whole blood, and urine. The results did not indicate any significant differences in most trace elements studied between AD or PD patients compared to controls, although the sample size is limited. A statistically significant increase in plasma Se was identified for PD patients relative to AD patients, but this could be due to age differences.


Asunto(s)
Enfermedades Neurodegenerativas/sangre , Sistemas de Atención de Punto , Espectrometría por Rayos X/instrumentación , Oligoelementos/sangre , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/orina , Estudios de Casos y Controles , Cobre/sangre , Cobre/orina , Femenino , Humanos , Masculino , Enfermedades Neurodegenerativas/orina , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/orina , Selenio/sangre , Selenio/orina , Sensibilidad y Especificidad , Espectrometría por Rayos X/métodos , Oligoelementos/orina , Zinc/sangre , Zinc/orina
12.
J Biol Chem ; 287(20): 16656-69, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22411985

RESUMEN

Proteinase-activated receptors 4 (PAR(4)) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR(4) remain unknown. Here, we report novel features of the intracellular trafficking of PAR(4) to the plasma membrane. PAR(4) was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit ß-COP1. Analysis of the PAR(4) protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R(183)AR → A(183)AA), mutation of which allowed efficient membrane delivery of PAR(4). Interestingly, co-expression with PAR(2) facilitated plasma membrane delivery of PAR(4), an effect produced through disruption of ß-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR(2) and PAR(4). PAR(2) also enhanced glycosylation of PAR(4) and activation of PAR(4) signaling. Our results identify a novel regulatory role for PAR(2) in the anterograde traffic of PAR(4). PAR(2) was shown to both facilitate and abrogate protein interactions with PAR(4), impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR(4) in normal physiology and disease.


Asunto(s)
Membrana Celular/metabolismo , Multimerización de Proteína/fisiología , Receptor PAR-2/metabolismo , Receptores de Trombina/metabolismo , Transducción de Señal/fisiología , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Membrana Celular/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Unión Proteica , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas/fisiología , Receptor PAR-2/genética , Receptores de Trombina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Br J Pharmacol ; 165(4): 802-19, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21797846

RESUMEN

The inhibitory kappa B kinases (IKKs) are well recognized as key regulators of the nuclear factor kappa B (NF-κB) cascade and as such represent a point of convergence for many extracellular agents that activate this pathway. The IKKs generally serve to transduce pro-inflammatory and growth stimulating signals that contribute to major cellular processes but also play a key role in the pathogenesis of a number of human diseases. Therefore, the catalytic IKKs represent attractive targets for intervention with small molecule kinase inhibitors. IKK isoforms are assembled as variable multi-subunit IKK complexes that regulate not only NF-κB dimers, but also protein substrates out-with this cascade. Consequently, close consideration of how these individual complexes transduce extracellular signals and more importantly what impact small molecule inhibitors of the IKKs have on functional outcomes are demanded. A number of adenosine triphosphate (ATP)-competitive IKKß-selective inhibitors have been developed but have demonstrated a lack of activity against IKKα. A number of these chemicals have also exhibited detrimental outcomes such as cellular toxicity and immuno-suppression. The impact of small molecule inhibitors of IKK catalytic activity will therefore be reappraised, examining the advantages and potential disadvantages to this type of intervention strategy in the treatment of diseases such as arthritis, intestinal inflammation and cancer. Furthermore, we will outline some emerging strategies, particularly the disruption of protein-protein interactions within the IKK complex, as an alternative route towards the development of novel pharmacological agents. Whether these alternatives may negate the limitations of ATP-competitive molecules and potentially avoid the issues of toxicity will be discussed.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Animales , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Neoplasias/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
14.
Cell Signal ; 22(2): 265-73, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19781631

RESUMEN

In this study we examined the potential for PAR(2) and TNFalpha to synergise at the level of MAP kinase signalling in PAR(2) expressing NCTC2544 cells. However, to our surprise we found that activation of PAR(2) by trypsin or the specific activating peptide SLIGKV-OH strongly inhibited both the phosphorylation and activity of JNK. In contrast neither p38 MAP kinase nor ERK activation was affected although TNFalpha stimulated IkappaBalpha loss was partially reversed. The inhibitory effect was not observed in parental cells nor in cells expressing PAR(4), however inhibition was reversed by pre-incubation with the novel PAR(2) antagonist K14585, suggesting that the effect is specific for PAR(2) activation. SLIGKV-OH was found to be more potent in inhibiting TNFalpha-induced JNK activation than in stimulating JNK alone, suggesting agonist-directed signalling. The PKC activator PMA, also mimicked the inhibitory effect of SLIGKV-OH, and the effects of both agents were reversed by pre-treatment with the PKC inhibitor, GF109203X. Furthermore, incubation with the novel G(q/11) inhibitor YM25480 also reversed PAR(2) mediated inhibition. Activation of PAR(2) was found to disrupt TNFR1 binding to RIP and TRADD and this was reversed by both GF109203X and YM25480. A similar mode of inhibition observed in HUVECs through PAR(2) or P2Y2 receptors demonstrates the potential of a novel paradigm for GPCRs linked to G(q/11), in mediating inhibition of TNFalpha-stimulated JNK activation. This has important implications in assessing the role of GPCRs in inflammation and other conditions.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Receptor PAR-2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Humanos , Quinasa I-kappa B/metabolismo , Indoles/farmacología , Maleimidas/farmacología , Oligopéptidos/farmacología , Fosforilación , Proteína Quinasa C/metabolismo , Receptor PAR-2/antagonistas & inhibidores , Receptores de Trombina/metabolismo , Transducción de Señal , Tripsina/farmacología
15.
Curr Opin Pharmacol ; 7(3): 334-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17369094

RESUMEN

Proteinase-activated receptors are a family of seven-transmembrane G-protein-coupled receptors. Activation of PARs is initiated through cleavage of the N-terminus, unmasking a tethered ligand that can then interact with the receptor and lead to its activation. PARs exhibit both anti- and pro-inflammatory properties, although recent evidence has pointed towards a detrimental role for PARs, particularly PAR-2, in arthritis. Initial research using PAR-2 knockout mice identified PAR-2 as a key mediator of chronic joint inflammation. Further research examined the role of PAR-2 in human articular cell types, demonstrating upregulation of PAR-2 in cells from an inflammatory background compared with non-inflammatory cells, with PAR-2 levels being further upregulated by pro-inflammatory cytokines and growth factors. To date, there is no clinical evidence of a role for PAR-2 in vivo in humans, although recent studies utilizing human joint tissue and articular cells are emerging.


Asunto(s)
Artritis/metabolismo , Receptor PAR-2/metabolismo , Animales , Humanos , Articulaciones/metabolismo , Receptor PAR-2/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...