Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 349(2): 387-400, 2005 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15890203

RESUMEN

VceR, a member of the TetR family of transcriptional regulators, is a repressor of the vceCAB operon, which encodes a multidrug efflux pump in Vibrio cholerae. VceR binds to a 28 bp inverted-repeat within the vceR-vceC intergenic region and is dissociated from this site with CCCP, a pump substrate. The rate of the CCCP-induced conformational change in VceR was determined by stopped-flow fluorescence spectroscopy, revealing a highly co-operative process that occurs with a Hill coefficient of approximately 4. The apparent affinity for CCCP decreased in a linear manner with increasing concentrations of DNA, indicative of competition between the CCCP and DNA for binding to VceR. These data are consistent with an equilibrium between mutually exclusive conformations that are supported by the binding of DNA and CCCP to the N and C termini of VceR, respectively. Size-exclusion chromatography and dynamic light-scattering studies indicate that VceR exists predominantly as a dimer; however, a pair of dimers binds to the DNA. In order to account for the fact that VceR is a dimer in the absence of DNA but binds CCCP with a Hill co-efficient of 4, implying that it has at least four binding-sites, we propose that the VceR monomer possesses a pair of binding sites that can be simultaneously occupied by CCCP. Using a gene-reporter system and stopped-flow spectroscopy, we established that the equilibrium between free VceR and VceR-CCCP plays a critical role in controlling expression of the pump. The co-operative transition between these states allows the repressor to respond to relatively small changes in drug concentration. Thus, repression and induction can be readily switched about a critical drug concentration which will prove toxic to the cell.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Operón/genética , Regiones Promotoras Genéticas/genética , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Unión Competitiva , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , ADN/genética , ADN Intergénico/genética , ADN Intergénico/metabolismo , Dimerización , Farmacorresistencia Bacteriana , Datos de Secuencia Molecular , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo , Especificidad por Sustrato , Vibrio cholerae/genética
2.
J Biol Chem ; 280(15): 15307-14, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15684414

RESUMEN

Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 A resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane beta-barrel domain in a fashion that may mimic protein-lipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana/química , Vibrio cholerae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cristalografía por Rayos X , Dimerización , Farmacorresistencia Microbiana , Bombas Iónicas/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Protones , Homología de Secuencia de Aminoácido , Electricidad Estática
3.
Curr Opin Pharmacol ; 4(5): 479-86, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15351352

RESUMEN

The active efflux of cytotoxic drugs mediated by multidrug transporters is the basis of multidrug resistance in prokaryotic and eukaryotic cells. Individual multidrug transporters can be extremely versatile, often exhibiting a staggering range of substrate specificity that can negate the effects of clinically relevant therapies. The effective treatment of bacterial, fungal and protozoan infections, along with certain cancer treatments, has been compromised by the presence of multidrug transporters. Traditionally, advances in the understanding of multidrug transporters have been made through biochemical analyses; more recently, however, fundamental advances have been made with the elucidation of several three dimensional structures of representative multidrug pumps. Biochemical and structural analysis of multidrug pumps could lead to the development of novel 'anti-efflux' therapies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Antiportadores/antagonistas & inhibidores , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/fisiología , Antiportadores/fisiología , Cristalografía por Rayos X , Resistencia a Múltiples Medicamentos/fisiología , Humanos , Modelos Moleculares , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/fisiología
4.
Biochem J ; 376(Pt 2): 313-38, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-13678421

RESUMEN

Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps.


Asunto(s)
Resistencia a Medicamentos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/fisiología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfato/metabolismo , Antiportadores/química , Antiportadores/fisiología , Sitios de Unión , Transporte Biológico , Modelos Moleculares , Sodio/metabolismo
5.
Trends Microbiol ; 11(1): 21-9, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12526851

RESUMEN

Our understanding of the exact mechanisms used by the transmembrane protein pumps that confer cellular resistance to cytotoxic drugs has improved enormously with the recent determination of the structures of three Escherichia coli transporters, two belonging to the ATP-binding cassette (ABC) superfamily and one to the resistance-nodulation-cell division (RND) family. Although these studies do not provide an insight into how drug pumps can recognize several structurally unrelated drugs, important advances have been also made in this area. Information on the molecular basis of multidrug recognition has been provided by determining the structure of transcriptional regulators that can bind, often structurally unrelated, cytotoxic drugs and control the expression of drug pumps.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Proteínas Portadoras , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico Activo , Resistencia a Múltiples Medicamentos , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Conformación Proteica , Relación Estructura-Actividad
6.
Trends Microbiol ; 10(10 Suppl): S8-14, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12377562

RESUMEN

Microorganisms and viruses have developed numerous resistance mechanisms that enable them to evade the effect of antimicrobials and antivirals. As a result, many have become resistant to almost every available means of treatment. This problem, although not new, is becoming increasingly acute and it is now clear that a fundamental understanding of the mechanisms that microbes and viruses deploy in the development of resistance is essential if we are to gain new insights into ways to combat this problem.


Asunto(s)
Farmacorresistencia Bacteriana , Farmacorresistencia Viral , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Bacterias/efectos de los fármacos , Bacterias/enzimología , Bacterias/patogenicidad , Permeabilidad de la Membrana Celular/fisiología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana/inmunología , Farmacorresistencia Viral/genética , Farmacorresistencia Viral/inmunología , Proteínas de Transporte de Membrana/clasificación , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Virus/efectos de los fármacos , Virus/enzimología , Virus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...