Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(4): 369, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489113

RESUMEN

Protected areas are typically managed as a network of sites exposed to varying anthropogenic conditions. Managing these networks benefits from monitoring of conditions across sites to help prioritize coordinated efforts. Monitoring marine vessel activity and related underwater radiated noise impacts across a network of protected areas, like the U.S. National Marine Sanctuary system, helps managers ensure the quality of habitats used by a wide range of marine species. Here, we use underwater acoustic detections of vessels to quantify different characteristics of vessel noise at 25 locations within eight marine sanctuaries including the Hawaiian Archipelago and the U.S. east and west coasts. Vessel noise metrics, including temporal presence and sound levels, were paired with Automatic Identification System (AIS) vessel tracking data to derive a suite of robust vessel noise indicators for use across the network of marine protected areas. Network-wide comparisons revealed a spectrum of vessel noise conditions that closely matched AIS vessel traffic composition. Shifts in vessel noise were correlated with the decrease in vessel activity early in the COVID-19 pandemic, and vessel speed reduction management initiatives. Improving our understanding of vessel noise conditions in these protected areas can help direct opportunities for reducing vessel noise, such as establishing and maintaining noise-free periods, enhancing port efficiency, engaging with regional and international vessel quieting initiatives, and leveraging co-benefits of management actions for reducing ocean noise.


Asunto(s)
Pandemias , Navíos , Humanos , Monitoreo del Ambiente , Ruido , Acústica , Ecosistema
2.
J Acoust Soc Am ; 153(3): 1710, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37002102

RESUMEN

Marine soundscapes provide the opportunity to non-invasively learn about, monitor, and conserve ecosystems. Some fishes produce sound in chorus, often in association with mating, and there is much to learn about fish choruses and the species producing them. Manually analyzing years of acoustic data is increasingly unfeasible, and is especially challenging with fish chorus, as multiple fish choruses can co-occur in time and frequency and can overlap with vessel noise and other transient sounds. This study proposes an unsupervised automated method, called SoundScape Learning (SSL), to separate fish chorus from soundscape using an integrated technique that makes use of randomized robust principal component analysis (RRPCA), unsupervised clustering, and a neural network. SSL was applied to 14 recording locations off southern and central California and was able to detect a single fish chorus of interest in 5.3 yrs of acoustically diverse soundscapes. Through application of SSL, the chorus of interest was found to be nocturnal, increased in intensity at sunset and sunrise, and was seasonally present from late Spring to late Fall. Further application of SSL will improve understanding of fish behavior, essential habitat, species distribution, and potential human and climate change impacts, and thus allow for protection of vulnerable fish species.


Asunto(s)
Ecosistema , Sonido , Animales , Acústica , Peces , Ruido
3.
Nat Ecol Evol ; 6(11): 1617-1625, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280783

RESUMEN

Animal migration plays a central role in many ecological and evolutionary processes, yet migratory populations worldwide are increasingly threatened. Adjusting migration timing to match ecosystem phenology is key to survival in dynamic and changing ecosystems, especially in an era of human-induced rapid environmental change. Social cues are increasingly recognized as major components of migratory behaviour, yet a comprehensive understanding of how social cues influence the timing of animal migrations remains elusive. Here, we introduce a framework for assessing the role that social cues, ranging from explicit (for example, active cueing) to implicit (for example, competition), play in animals' temporal migration decisions across a range of scales. By applying this theoretical lens to a systematic review of published literature, we show that a broad range of social cues frequently mediate migration timing at a range of temporal scales and across highly diverse migratory taxa. We further highlight that while rarely documented, several social cue mechanisms (for example, social learning and density dependency) play important adaptive roles in matching migration timing with ecosystem dynamics. Thus, social cues play a fundamental role in migration timing, with potentially widespread ecological consequences and implications for the conservation of migratory species. Furthermore, our analysis establishes a theoretical basis on which to evaluate future findings on the role of both conspecific and interspecific social cues in this intersection of behavioural ecology and global change biology.


Asunto(s)
Migración Animal , Ecosistema , Animales , Humanos , Señales (Psicología) , Evolución Biológica
4.
J Acoust Soc Am ; 150(3): 1883, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34598647

RESUMEN

Rapid changes in the Arctic from shifting climate and human use patterns are affecting previously reported distributions and movements of marine mammals. The underwater soundscape, a key component of marine mammal habitats, is also changing. This study integrates acoustic data, collected at a site in the northern Bering Sea, with information on sound sources to quantify their occurrence throughout the year and identify deviations in conditions and dominant soundscape components. Predictive models are applied to explain variation in sound levels and to compare the relative contributions of various soundscape components. Levels across all octave bands were influenced most strongly by the variation in abiotic environment across seasons. The presence of commercial ships did not have a discernible effect on sound levels at this location and period of time. The occurrence of sources was compared to a second site, where we documented how higher levels of shipping changed that soundscape. This study demonstrated the value of acoustic monitoring to characterize the dominant acoustic features in a soundscape and the importance of preserving soundscapes based on dominant features rather than level of sound. Using a soundscape approach has relevance for protecting marine mammals and for the food security of Alaska Native communities that depend upon them.


Asunto(s)
Ruido , Sonido , Acústica , Animales , Ecosistema , Humanos , Navíos
5.
Curr Biol ; 30(23): 4773-4779.e3, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33007246

RESUMEN

Linking individual and population scales is fundamental to many concepts in ecology [1], including migration [2, 3]. This behavior is a critical [4] yet increasingly threatened [5] part of the life history of diverse organisms. Research on migratory behavior is constrained by observational scale [2], limiting ecological understanding and precise management of migratory populations in expansive, inaccessible marine ecosystems [6]. This knowledge gap is magnified for dispersed oceanic predators such as endangered blue whales (Balaenoptera musculus). As capital breeders, blue whales migrate vast distances annually between foraging and breeding grounds, and their population fitness depends on synchrony of migration with phenology of prey populations [7, 8]. Despite previous studies of individual-level blue whale vocal behavior via bio-logging [9, 10] and population-level acoustic presence via passive acoustic monitoring [11], detection of the life history transition from foraging to migration remains challenging. Here, we integrate direct high-resolution measures of individual behavior and continuous broad-scale acoustic monitoring of regional song production (Figure 1A) to identify an acoustic signature of the transition from foraging to migration in the Northeast Pacific population. We find that foraging blue whales sing primarily at night, whereas migratory whales sing primarily during the day. The ability to acoustically detect population-level transitions in behavior provides a tool to more comprehensively study the life history, fitness, and plasticity of population behavior in a dispersed, capital breeding population. Real-time detection of this behavioral signal can also inform dynamic management efforts [12] to mitigate anthropogenic threats to this endangered population [13, 14]).


Asunto(s)
Migración Animal , Balaenoptera/fisiología , Seguimiento de Parámetros Ecológicos/métodos , Vocalización Animal/fisiología , Acústica , Animales , Especies en Peligro de Extinción , Conducta Alimentaria , Masculino , Fotoperiodo , Estaciones del Año
6.
J Acoust Soc Am ; 148(2): 845, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32873009

RESUMEN

Passive acoustic monitoring of ocean soundscapes can provide information on ecosystem status for those tasked with protecting marine resources. In 2015, the National Oceanic and Atmospheric Administration (NOAA) established a long-term, continuous, low-frequency (10 Hz-2 kHz) passive acoustic monitoring site in the Cordell Bank National Marine Sanctuary (CBNMS), located offshore of the central United States of America (U.S.) west coast, near San Francisco, CA. The California Current flows southward along the coast in this area, supporting a diverse community of marine animals, including several baleen whale species. Acoustic data analysis revealed that both large vessels and vocalizing baleen whales contribute to the ambient soundscape of the CBNMS. Sound levels fluctuated by month with the highest levels in the fall and lowest levels in the summer. Throughout the year, very low-frequency (10-100 Hz) sound levels were most variable. Vessels and whales overlap in their contributions to ambient sound levels within this range, although vessel contributions were more omnipresent, while seasonal peaks were associated with vocalizing whales. This characterization of low-frequency ambient sound levels in the CBNMS establishes initial baselines for an important component of this site's underwater soundscape. Standardized monitoring of soundscapes directly supports NOAA's ability to evaluate and report on conditions within national marine sanctuaries.


Asunto(s)
Acústica , Ecosistema , Animales , Océanos y Mares , Estaciones del Año , Ballenas
7.
Nat Ecol Evol ; 4(4): 502-511, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203474

RESUMEN

Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms-masking, distracting and misleading-that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of 'sensory danger zones', hotspots of conservation concern where sensory pollutants overlap in space and time with an organism's activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.


Asunto(s)
Ecología , Ruido , Animales , Actividades Humanas , Humanos
8.
R Soc Open Sci ; 5(8): 180241, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30225013

RESUMEN

Acoustic communication is an important aspect of reproductive, foraging and social behaviours for many marine species. Northeast Pacific blue whales (Balaenoptera musculus) produce three different call types-A, B and D calls. All may be produced as singular calls, but A and B calls also occur in phrases to form songs. To evaluate the behavioural context of singular call and phrase production in blue whales, the acoustic and dive profile data from tags deployed on individuals off southern California were assessed using generalized estimating equations. Only 22% of all deployments contained sounds attributed to the tagged animal. A larger proportion of tagged animals were female (47%) than male (13%), with 40% of unknown sex. Fifty per cent of tags deployed on males contained sounds attributed to the tagged whale, while only a few (5%) deployed on females did. Most calls were produced at shallow depths (less than 30 m). Repetitive phrasing (singing) and production of singular calls were most common during shallow, non-lunging dives, with the latter also common during surface behaviour. Higher sound production rates occurred during autumn than summer and they varied with time-of-day: singular call rates were higher at dawn and dusk, while phrase production rates were highest at dusk and night.

9.
Conserv Biol ; 32(5): 1174-1184, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29676813

RESUMEN

Passive acoustic monitoring could be a powerful way to assess biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices (i.e., a mathematical summary of acoustic energy) offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examined the relationship between acoustic indices and the diversity and abundance of biological sounds in recordings. We reviewed the acoustic-index literature and found that over 60 indices have been applied to a range of objectives with varying success. We used 36 of the most indicative indices to develop a predictive model of the diversity of animal sounds in recordings. Acoustic data were collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental United States. For terrestrial recordings, random-forest models with a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R2  ≥ 0.94, mean squared error [MSE] ≤170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively affected by insect, weather, and anthropogenic sounds. For marine recordings, random-forest models poorly predicted Shannon diversity, richness, and total number of biological sounds (R2 ≤ 0.40, MSE ≥ 195). Our results suggest that using a combination of relevant acoustic indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Acústica , Animales , Ecosistema , Bosques
10.
Science ; 356(6337): 531-533, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28473587

RESUMEN

Anthropogenic noise threatens ecological systems, including the cultural and biodiversity resources in protected areas. Using continental-scale sound models, we found that anthropogenic noise doubled background sound levels in 63% of U.S. protected area units and caused a 10-fold or greater increase in 21%, surpassing levels known to interfere with human visitor experience and disrupt wildlife behavior, fitness, and community composition. Elevated noise was also found in critical habitats of endangered species, with 14% experiencing a 10-fold increase in sound levels. However, protected areas with more stringent regulations had less anthropogenic noise. Our analysis indicates that noise pollution in protected areas is closely linked with transportation, development, and extractive land use, providing insight into where mitigation efforts can be most effective.


Asunto(s)
Ecosistema , Actividades Humanas , Ruido/efectos adversos , Animales , Biodiversidad , Especies en Peligro de Extinción , Industria Procesadora y de Extracción , Humanos , Desarrollo Industrial , Transportes , Estados Unidos
11.
Ecol Evol ; 6(14): 4697-710, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27547306

RESUMEN

Monitoring patterns in biodiversity and phenology have become increasingly important given accelerating levels of anthropogenic change. Long-term monitoring programs have reported earlier occurrence of spring activity, reflecting species response to climate change. Although tracking shifts in spring migration represents a valuable approach to monitoring community-level consequences of climate change, robust long-term observations are challenging and costly. Audio recordings and metrics of bioacoustic activity could provide an effective method for monitoring changes in songbird activity and broader biotic interactions. We used 3 years of spring and fall recordings at six sites in Glacier Bay National Park, Alaska, an area experiencing rapid warming and glacial retreat, to examine the utility of bioacoustics to detect changes in songbird phenology. We calculated the Acoustic Complexity Index (ACI), an algorithm representing an index of bird community complexity. Abrupt changes in ACI values from winter to spring corresponded to spring transition, suggesting that ACI may be an effective, albeit coarse metric to detect the arrival of migrating songbirds. The first peak in ACI shifted from April 16 to April 11 from 2012 to 2014. Changes in ACI were less abrupt in the fall due to weather events, suggesting spring recordings are better suited to indicate phenology. To ensure changes in ACI values were detecting real changes in songbird activity, we explored the relationship between ACI and song of three species: varied thrush (Ixoreus naevius), Pacific wren (Troglodytes pacificus), and ruby-crowned kinglet (Regulus calendula). ACI was positively related to counts of all species, but most markedly with song of the varied thrush, the most common species in our recordings and a known indicator of forest ecosystem health. We conclude that acoustic recordings paired with bioacoustic indices may be a useful method of monitoring shifts in songbird communities due to climate change and other sources of anthropogenic disturbance.

12.
Biol Rev Camb Philos Soc ; 91(4): 982-1005, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26118691

RESUMEN

Global increases in environmental noise levels - arising from expansion of human populations, transportation networks, and resource extraction - have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource-management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two-thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger-scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise-source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural-resource managers in predicting potential outcomes of noise exposure.


Asunto(s)
Animales Salvajes , Ruido/efectos adversos , Animales , Ecosistema , Humanos , Investigación
13.
Proc Biol Sci ; 280(1765): 20130657, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23825206

RESUMEN

Mid-frequency military (1-10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.


Asunto(s)
Estimulación Acústica , Balaenoptera/fisiología , Personal Militar , Sonido , Animales , California , Conducta Alimentaria/fisiología , Natación
14.
J Acoust Soc Am ; 131(1): 92-103, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22280574

RESUMEN

Underwater radiated noise measurements for seven types of modern commercial ships during normal operating conditions are presented. Calibrated acoustic data (<1000 Hz) from an autonomous seafloor-mounted acoustic recorder were combined with ship passage information from the Automatic Identification System. This approach allowed for detailed measurements (i.e., source level, sound exposure level, and transmission range) on ships of opportunity. A key result was different acoustic levels and spectral shapes observed from different ship-types. A 54 kGT container ship had the highest broadband source level at 188 dB re 1 µPa@1m; a 26 kGT chemical tanker had the lowest at 177 dB re 1 µPa@1m. Bulk carriers had higher source levels near 100 Hz, while container ship and tanker noise was predominantly below 40 Hz. Simple models to predict source levels of modern merchant ships as a group from particular ship characteristics (e.g., length, gross tonnage, and speed) were not possible given individual ship-type differences. Furthermore, ship noise was observed to radiate asymmetrically. Stern aspect noise levels are 5 to 10 dB higher than bow aspect noise levels. Collectively, these results emphasize the importance of including modern ship-types in quantifying shipping noise for predictive models of global, regional, and local marine environments.

15.
Mar Biol ; 156(12): 2631-2640, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-24391238

RESUMEN

The relationship between beaked whales and certain anthropogenic sounds remains poorly understood and of great interest. Although Cuvier's beaked whales (Ziphius cavirostris) are widely distributed, little is known of their behavior and population structure throughout much of their range. We conducted a series of five combined visual-acoustic marine mammal surveys from 2006 to 2008 in the southern San Nicolas Basin, a site of frequent naval activity off the southern California coast, west of San Clemente Island. The study area was defined by a 1,800 km2 array of 88 bottom-mounted hydrophones at depths up to 1,850 m. The array was used to vector visual observers toward vocalizing marine mammal species. Thirty-seven groups of Cuvier's beaked whales were encountered during the study period. The overall encounter rate was one group for every 21.0 h of survey effort, and was as high as one group per 10.2 h of effort during the October 2007 survey. Whales were encountered in the deepest portion of the study area, at a mean bottom depth of 1,580 m (SD 138). The average group size was 3.8 individuals (SD 2.4), which was higher than has been reported from other studies of this species. Twenty-four groups were observed over multiple surfacings (median = 4 surfacings, range 2-15). The mean encounter duration of extended sightings was 104 min (SD 98, range 12-466 min) and the mean distance moved over the course of sightings was 1.66 km (SD 1.56, range 0.08-6.65 km). Temporal surfacing patterns during extended encounters were similar to dive behavior described from Cuvier's beaked whales carrying time-depth recording tags. Seventy-eight photographic identifications were made of 58 unique individuals, for an overall resighting rate of 0.26. Whales were sighted on up to 4 days, with duration from first to last sighting spanning 2-79 days. For those whales sighted on subsequent days, the mean distance between subsequent sightings was 8.6 km (SD 7.9). Individuals resighted over 2-3 days were usually in association with previous group members. Approximately one-third of groups contained more than one adult male, and many of the repeated associations involved adult males. These observations suggest the basin west of San Clemente Island may be an important region for Cuvier's beaked whales, and also one which affords an unusual opportunity to collect detailed data on this species. Given its status as an active military range, it can also provide the ability to monitor the behavior of individuals in the presence of naval sonar, a critical step in the management of this and other beaked whale populations worldwide.

16.
Anat Rec (Hoboken) ; 291(4): 353-78, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18228579

RESUMEN

This study uses remote imaging technology to quantify, compare, and contrast the cephalic anatomy between a neonate female and a young adult male Cuvier's beaked whale. Primary results reveal details of anatomic geometry with implications for acoustic function and diving. Specifically, we describe the juxtaposition of the large pterygoid sinuses, a fibrous venous plexus, and a lipid-rich pathway that connects the acoustic environment to the bony ear complex. We surmise that the large pterygoid air sinuses are essential adaptations for maintaining acoustic isolation and auditory acuity of the ears at depth. In the adult male, an acoustic waveguide lined with pachyosteosclerotic bones is apparently part of a novel transmission pathway for outgoing biosonar signals. Substitution of dense tissue boundaries where we normally find air sacs in delphinoids appears to be a recurring theme in deep-diving beaked whales and sperm whales. The anatomic configuration of the adult male Ziphius forehead resembles an upside-down sperm whale nose and may be its functional equivalent, but the homologous relationships between forehead structures are equivocal.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Cráneo/anatomía & histología , Vocalización Animal/fisiología , Ballenas/anatomía & histología , Tejido Adiposo/anatomía & histología , Animales , Vías Auditivas/anatomía & histología , Cefalometría/instrumentación , Femenino , Procesamiento de Imagen Asistido por Computador/instrumentación , Masculino , Senos Paranasales/anatomía & histología , Caracteres Sexuales , Base del Cráneo/anatomía & histología , Espectrografía del Sonido , Hueso Esfenoides/anatomía & histología , Ballenas/fisiología
17.
Anat Rec (Hoboken) ; 290(8): 1023-32, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17654676

RESUMEN

Postmortem changes in geometry, density, and sound speed within organs and tissues (melon, bone, blubber, and mandibular fat) of the dolphin head were evaluated using computed tomography (CT) scans of live and postmortem bottlenose dolphins (Tursiops truncatus). Specimens were classified into three different treatment groups: live, recently dead, and frozen followed by thawing. Organs and tissues in similar anatomical regions of the head were compared in CT scans of the specimens to identify postmortem changes in morphology. In addition, comparisons of Hounsfield units in the CT scans were used to evaluate postmortem changes in the density of melon, bone, blubber, and mandibular fat. Sound speed measurements from melon, blubber, connective tissue, and muscle were collected from fresh and frozen samples in the same specimen to evaluate effects due to freezing and thawing process on sound speed measurements. Similar results in tissue and organ geometry, density, and sound speed measurements suggested that postmortem material is a reliable approximation for live melon, bone, blubber, muscle, connective tissue, and mandibular fat. These results have implications for examining viscoelastic properties and the accuracy of simulating sound transmission in postmortem material.


Asunto(s)
Delfín Mular/anatomía & histología , Cambios Post Mortem , Animales , Densidad Ósea , Femenino , Cabeza/anatomía & histología , Cabeza/diagnóstico por imagen , Masculino , Análisis de Regresión , Sonido , Tomografía Computarizada por Rayos X
18.
J Exp Biol ; 209(Pt 14): 2726-33, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16809463

RESUMEN

An experiment was conducted to investigate the sound pressure patterns on the melon of odontocetes by using four broadband hydrophones embedded in suction cups to measure echolocation signals on the surface of the forehead of two harbor porpoises (Phocoena phocoena). It has long been hypothesized that the special lipids found in the melon of odontocetes, and not in any other mammals, focus sounds produced in the nasal region that then propagate through the melon, producing a beam that is directional in both the horizontal and vertical planes. The results of our measurements supported the melon-focusing hypothesis, with the maximum click amplitude, representing the axis of the echolocation beam, located approximately 5.6-6.1 cm from the edge of the animal's upper lip along the midline of the melon. The focusing is not sharp but is sufficient to produce a transmission beam of about 16 degrees. Click amplitude dropped off rapidly at locations away from the location of site of maximum amplitude. Based on comparisons of forehead anatomy from similar sized porpoises, the beam axis coincided with a pathway extending from the phonic lips through the axis of the low-density/low sound velocity lipid core of the melon. The significant interaction between click number and hydrophone position suggests that the echolocation signals can take slightly different pathways through the melon, probably as a result of how the signals are launched by the production mechanism and the position of the acoustically reflective air sacs.


Asunto(s)
Acústica , Ecolocación/fisiología , Cabeza/fisiología , Phocoena/fisiología , Animales , Masculino
19.
J Exp Biol ; 208(Pt 12): 2319-32, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15939773

RESUMEN

Tissue physical properties from a Cuvier's beaked whale (Ziphius cavirostris) neonate head are reported and compared with computed tomography (CT) X-ray imaging. Physical properties measured include longitudinal sound velocity, density, elastic modulus and hysteresis. Tissues were classified by type as follows: mandibular acoustic fat, mandibular blubber, forehead acoustic fat (melon), forehead blubber, muscle and connective tissue. Results show that each class of tissues has unique, co-varying physical properties. The mandibular acoustic fats had minimal values for sound speed (1350+/-10.6 m s(-1)) and mass density (890+/-23 kg m(-3)). These values increased through mandibular blubber (1376+/-13 m s(-1), 919+/-13 kg m(-3)), melon (1382+/-23 m s(-1), 937+/-17 kg m(-3)), forehead blubber (1401+/-7.8 m s(-1), 935+/-25 kg m(-3)) and muscle (1517+/-46.8 m s(-1), 993+/-58 kg m(-3)). Connective tissue had the greatest mean sound speed and density (1628+/-48.7 m s(-1), 1087+/-41 kg m(-3)). The melon formed a low-density, low-sound-speed core, supporting its function as a sound focusing organ. Hounsfield unit (HU) values from CT X-ray imaging are correlated with density and sound speed values, allowing HU values to be used to predict these physical properties. Blubber and connective tissues have a higher elastic modulus than acoustic fats and melon, suggesting more collagen structure in blubber and connective tissues. Blubber tissue elastic modulus is nonlinear with varying stress, becoming more incompressible as stress is increased. These data provide important physical properties required to construct models of the sound generation and reception mechanisms in Ziphius cavirostris heads, as well as models of their interaction with anthropogenic sound.


Asunto(s)
Tejido Adiposo/fisiología , Animales Recién Nacidos/anatomía & histología , Tejido Conectivo/fisiología , Músculo Esquelético/fisiología , Sonido , Ballenas/anatomía & histología , Análisis de Varianza , Animales , Animales Recién Nacidos/fisiología , Elasticidad , Cabeza/anatomía & histología , Cabeza/fisiología , Modelos Anatómicos , Temperatura , Tomografía Computarizada por Rayos X , Ballenas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...