Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Speech Lang Pathol ; 26(2): 267-277, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37272348

RESUMEN

PURPOSE: The primary objective of this study was to determine if speech and pause measures obtained using a passage reading task and timing measures from a monosyllabic diadochokinesis (DDK) task differ across speakers of Canadian French diagnosed with amyotrophic lateral sclerosis (ALS) presenting with and without bulbar symptoms, and healthy controls. The secondary objective was to determine if these measures can reflect the severity of bulbar symptoms. METHOD: A total of 29 Canadian French speakers with ALS (classified as bulbar symptomatic [n = 14] or pre-symptomatic [n = 15]) and 17 age-matched healthy controls completed a passage reading task and a monosyllabic DDK task (/pa/ and /ta/), for up to three follow-up visits. Measures of speaking rate, total duration, speech duration, and pause events were extracted from the passage reading recordings using a semi-automated speech and pause analysis procedure. Manual analysis of DDK recordings provided measures of DDK rate and variability. RESULT: Group comparisons revealed significant differences (p = < .05) between the symptomatic group and the pre-symptomatic and control groups for all passage measures and DDK rates. Only the DDK rate in /ta/ differentiated the pre-symptomatic and control groups. Repeated measures correlations revealed moderate correlations (rrm = > 0.40; p = < 0.05) between passage measures of total duration, speaking rate, speech duration, and number of pauses, and ALSFRS-R total and bulbar scores, as well as between DDK rate and ALSFRS-R total score. CONCLUSION: Speech and pause measures in passage and timing measures in monosyllabic DDK tasks might be suitable for monitoring bulbar functional symptoms in French speakers with ALS, but more work is required to identify which measures are sensitive to the earliest stages of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Habla , Humanos , Esclerosis Amiotrófica Lateral/complicaciones , Canadá , Medición de la Producción del Habla/métodos , Lenguaje
2.
Digit Health ; 9: 20552076231219102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144173

RESUMEN

Background and objective: Amyotrophic lateral sclerosis (ALS) frequently causes speech impairments, which can be valuable early indicators of decline. Automated acoustic assessment of speech in ALS is attractive, and there is a pressing need to validate such tools in line with best practices, including analytical and clinical validation. We hypothesized that data analysis using a novel speech assessment pipeline would correspond strongly to analyses performed using lab-standard practices and that acoustic features from the novel pipeline would correspond to clinical outcomes of interest in ALS. Methods: We analyzed data from three standard speech assessment tasks (i.e., vowel phonation, passage reading, and diadochokinesis) in 122 ALS patients. Data were analyzed automatically using a pipeline developed by Winterlight Labs, which yielded 53 acoustic features. First, for analytical validation, data were analyzed using a lab-standard analysis pipeline for comparison. This was followed by univariate analysis (Spearman correlations between individual features in Winterlight and in-lab datasets) and multivariate analysis (sparse canonical correlation analysis (SCCA)). Subsequently, clinical validation was performed. This included univariate analysis (Spearman correlation between automated acoustic features and clinical measures) and multivariate analysis (interpretable autoencoder-based dimensionality reduction). Results: Analytical validity was demonstrated by substantial univariate correlations (Spearman's ρ > 0.70) between corresponding pairs of features from automated and lab-based datasets, as well as interpretable SCCA feature groups. Clinical validity was supported by strong univariate correlations between automated features and clinical measures (Spearman's ρ > 0.70), as well as associations between multivariate outputs and clinical measures. Conclusion: This novel, automated speech assessment feature set demonstrates substantial promise as a valid tool for analyzing impaired speech in ALS patients and for the further development of these technologies.

4.
Digit Biomark ; 7(1): 7-17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205279

RESUMEN

Introduction: Kinematic analyses have recently revealed a strong potential to contribute to the assessment of neurological diseases. However, the validation of home-based kinematic assessments using consumer-grade video technology has yet to be performed. In line with best practices for digital biomarker development, we sought to validate webcam-based kinematic assessment against established, laboratory-based recording gold standards. We hypothesized that webcam-based kinematics would possess psychometric properties comparable to those obtained using the laboratory-based gold standards. Methods: We collected data from 21 healthy participants who repeated the phrase "buy Bobby a puppy" (BBP) at four different combinations of speaking rate and volume: Slow, Normal, Loud, and Fast. We recorded these samples twice back-to-back, simultaneously using (1) an electromagnetic articulography ("EMA"; NDI Wave) system, (2) a 3D camera (Intel RealSense), and (3) a 2D webcam for video recording via an in-house developed app. We focused on the extraction of kinematic features in this study, given their demonstrated value in detecting neurological impairments. We specifically extracted measures of speed/acceleration, range of motion (ROM), variability, and symmetry using the movements of the center of the lower lip during these tasks. Using these kinematic features, we derived measures of (1) agreement between recording methods, (2) test-retest reliability of each method, and (3) the validity of webcam recordings to capture expected changes in kinematics as a result of different speech conditions. Results: Kinematics measured using the webcam demonstrated good agreement with both the RealSense and EMA (ICC-A values often ≥0.70). Test-retest reliability, measured using the absolute agreement (2,1) formulation of the intraclass correlation coefficient (i.e., ICC-A), was often "moderate" to "strong" (i.e., ≥0.70) and similar between the webcam and EMA-based kinematic features. Finally, the webcam kinematics were typically as sensitive to differences in speech tasks as EMA and the 3D camera gold standards. Discussion and Conclusions: Our results suggested that webcam recordings display good psychometric properties, comparable to laboratory-based gold standards. This work paves the way for a large-scale clinical validation to continue the development of these promising technologies for the assessment of neurological diseases via home-based methods.

5.
J Speech Lang Hear Res ; 65(3): 940-953, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35171700

RESUMEN

PURPOSE: Oral diadochokinesis (DDK) is a standard dysarthria assessment task. To extract automatic and semi-automatic DDK measurements, numerous DDK analysis algorithms based on acoustic signal processing are available, including amplitude based, spectral based, and hybrid. However, these algorithms have been predominantly validated in individuals with no perceptible to mild dysarthria. The behavior of these algorithms across dysarthria severity is largely unknown. Likewise, these algorithms have not been tested equally for various syllable types. The goal of this study was to evaluate the performance of five common DDK algorithms as a function of dysarthria severity, considering syllable types. METHOD: We analyzed 282 DDK recordings of /ba/, /pa/, and /ta/ from 145 participants with amyotrophic lateral sclerosis. Recordings were stratified into mild, moderate, or severe dysarthria groups based on individual performance on the Speech Intelligibility Test. Analysis included manual and automatic estimation of the number of syllables, DDK rate, and cycle-to-cycle temporal variability (cTV). Validation metrics included Bland-Altman mixed-effects limits of agreement between manual and automatic syllable counts, recall and precision between manual and automatic syllable boundary detection, and Kendall's tau-b correlations between manual and algorithm-detected DDK rate and cTV. RESULTS: The amplitude-based algorithm (absolute energy) yielded the strongest correlations with manual analysis across all severity groups for DDK rate (τ b = 0.7-0.84) and cTV (τ b = 0.7-0.84) and the narrowest limits of agreement (-5.92 to 7.12 syllable difference). Moreover, this algorithm also provided the highest mean recall and precision across severity groups for /ba/ and /pa/, but with significantly more variation for/ta/. CONCLUSIONS: Algorithms based on signal energy analysis appeared to be the most robust for DDK analysis across dysarthria severity and syllable types; however, it remains prone to error against severe dysarthria and alveolar syllable context. Further development is needed to address this important issue.


Asunto(s)
Esclerosis Amiotrófica Lateral , Disartria , Acústica , Algoritmos , Esclerosis Amiotrófica Lateral/complicaciones , Disartria/diagnóstico , Disartria/etiología , Humanos , Medición de la Producción del Habla/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...