RESUMEN
Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.
RESUMEN
BACKGROUND: Methotrexate is the first-line treatment for immune-mediated inflammatory diseases and reduces vaccine-induced immunity. We evaluated if a 2-week interruption of methotrexate treatment immediately after COVID-19 booster vaccination improved antibody response against the S1 receptor binding domain (S1-RBD) of the SARS-CoV-2 spike protein and live SARS-CoV-2 neutralisation compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. METHOD: We did a multicentre, open-label, parallel-group, randomised, superiority trial in secondary-care rheumatology and dermatology clinics in 26 hospitals in the UK. Adults (aged ≥18 years) with immune-mediated inflammatory diseases taking methotrexate (≤25 mg per week) for at least 3 months, who had received two primary vaccine doses from the UK COVID-19 vaccination programme were eligible. Participants were randomly assigned (1:1) using a centralised validated computer program, to temporarily suspend methotrexate treatment for 2 weeks immediately after COVID-19 booster vaccination or continue treatment as usual. The primary outcome was S1-RBD antibody titres 4 weeks after COVID-19 booster vaccination and was assessed masked to group assignment. All randomly assigned patients were included in primary and safety analyses. This trial is registered with ISRCTN, ISRCTN11442263; following a pre-planned interim analysis, recruitment was stopped early. FINDING: Between Sept 30, 2021, and March 7, 2022, we screened 685 individuals, of whom 383 were randomly assigned: to either suspend methotrexate (n=191; mean age 58·8 years [SD 12·5], 118 [62%] women and 73 [38%] men) or to continue methotrexate (n=192; mean age 59·3 years [11·9], 117 [61%] women and 75 [39%] men). At 4 weeks, the geometric mean S1-RBD antibody titre was 25 413 U/mL (95% CI 22 227-29 056) in the suspend methotrexate group and 12 326 U/mL (10 538-14 418) in the continue methotrexate group with a geometric mean ratio (GMR) of 2·08 (95% CI 1·59-2·70; p<0·0001). No intervention-related serious adverse events occurred. INTERPRETATION: 2-week interruption of methotrexate treatment in people with immune-mediated inflammatory diseases enhanced antibody responses after COVID-19 booster vaccination that were sustained at 12 weeks and 26 weeks. There was a temporary increase in inflammatory disease flares, mostly self-managed. The choice to suspend methotrexate should be individualised based on disease status and vulnerability to severe outcomes from COVID-19. FUNDING: National Institute for Health and Care Research.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Glicoproteína de la Espiga del Coronavirus , Adulto , Masculino , Humanos , Femenino , Adolescente , Persona de Mediana Edad , Vacunas contra la COVID-19/efectos adversos , Metotrexato/uso terapéutico , SARS-CoV-2RESUMEN
Background: Biologic plausibility for the association between exposure to particulate matter (PM) less than 10 µm in aerodynamic diameter (PM10) and coronavirus disease 2019 (COVID-19) morbidity in epidemiologic studies has not been determined. The upregulation of angiotensin-converting enzyme 2 (ACE2), the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) entry receptor on host cells, by PM10 is a putative mechanism. Objective: We sought to assess the effect of PM10 on SARS-CoV-2 infection of cells in vitro. Methods: PM10 from the curbside of London's Marylebone Road and from exhaust emissions was collected by cyclone. A549 cells, human primary nasal epithelial cells (HPNEpCs), SARS-CoV-2-susceptible Vero-E6 and Calu3 cells were cultured with PM10. ACE2 expression (as determined by median fluorescent intensity) was assessed by flow cytometry, and ACE2 mRNA transcript level was assessed by PCR. The role of oxidative stress was determined by N-acetyl cysteine. The cytopathic effect of SARS-CoV-2 (percentage of infection enhancement) and expression of SARS-CoV-2 genes' open reading frame (ORF) 1ab, S protein, and N protein (focus-forming units/mL) were assessed in Vero-E6 cells. Data were analyzed by either the Mann-Whitney U test or Kruskal-Wallis test with the Dunn multiple comparisons test. Results: Curbside PM10 at concentrations of 10 µg/mL or more increased ACE2 expression in A549 cells (P = .0021). Both diesel PM10 and curbside PM10 in a concentration of 10 µg/mL increased ACE2 expression in HPNEpCs (P = .0022 and P = .0072, respectively). ACE2 expression simulated by curbside PM10 was attenuated by N-acetyl cysteine in HPNEpCs (P = .0464). Curbside PM10 increased ACE2 expression in Calu3 cells (P = .0256). In Vero-E6 cells, curbside PM10 increased ACE2 expression (P = .0079), ACE2 transcript level (P = .0079), SARS-CoV-2 cytopathic effect (P = .0002), and expression of the SARS-CoV-2 genes' ORF1ab, S protein, and N protein (P = .0079). Conclusions: Curbside PM10 increases susceptibility to SARS-COV-2 infection in vitro.
RESUMEN
Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus. The viral determinants of Lv2 susceptibility have been mapped to the envelope and capsid proteins in both HIV-1 and HIV-2, and also viral protein R (Vpr) in HIV-1, and appears dependent on cellular entry mechanism. A genome-wide screen identified several likely contributing host factors including members of the polymerase-associated factor 1 (PAF1) and human silencing hub (HUSH) complexes, and the newly characterized regulation of nuclear pre-mRNA domain containing 2 (RPRD2). Subsequently, RPRD2 (or RNA-associated early-stage antiviral factor) has been shown to be upregulated upon T cell activation, is highly expressed in myeloid cells, binds viral reverse transcripts, and potently restricts HIV-1 infection. RPRD2 is also bound by HIV-1 Vpr and targeted for degradation by the proteasome upon reverse transcription, suggesting RPRD2 impedes reverse transcription and Vpr targeting overcomes this block. RPRD2 is mainly localized to the nucleus and binds RNA, DNA, and DNA:RNA hybrids. More recently, RPRD2 has been shown to negatively regulate genome-wide transcription and interact with the HUSH and PAF1 complexes which repress HIV transcription and are implicated in maintenance of HIV latency. In this review, we examine Lv2 restriction and the antiviral role of RPRD2 and consider potential mechanism(s) of action.
RESUMEN
Among the unknowns in decoding the pathogenesis of SARS-CoV-2 persistent symptoms in Long Covid is whether there is a contributory role of abnormal immunity during acute infection. It has been proposed that Long Covid is a consequence of either an excessive or inadequate initial immune response. Here, we analyze SARS-CoV-2 humoral and cellular immunity in 86 healthcare workers with laboratory confirmed mild or asymptomatic SARS-CoV-2 infection during the first wave. Symptom questionnaires allow stratification into those with persistent symptoms and those without for comparison. During the period up to 18-weeks post-infection, we observe no difference in antibody responses to spike RBD or nucleoprotein, virus neutralization, or T cell responses. Also, there is no difference in the profile of antibody waning. Analysis at 1-year, after two vaccine doses, comparing those with persistent symptoms to those without, again shows similar SARS-CoV-2 immunity. Thus, quantitative differences in these measured parameters of SARS-CoV-2 adaptive immunity following mild or asymptomatic acute infection are unlikely to have contributed to Long Covid causality. ClinicalTrials.gov (NCT04318314).
Asunto(s)
COVID-19 , Humanos , Anticuerpos Antivirales , Infecciones Asintomáticas , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Linfocitos TRESUMEN
T cell responses precede antibody and may provide early control of infection. We analyzed the clonal basis of this rapid response following SARS-COV-2 infection. We applied T cell receptor (TCR) sequencing to define the trajectories of individual T cell clones immediately. In SARS-COV-2 PCR+ individuals, a wave of TCRs strongly but transiently expand, frequently peaking the same week as the first positive PCR test. These expanding TCR CDR3s were enriched for sequences functionally annotated as SARS-COV-2 specific. Epitopes recognized by the expanding TCRs were highly conserved between SARS-COV-2 strains but not with circulating human coronaviruses. Many expanding CDR3s were present at high frequency in pre-pandemic repertoires. Early response TCRs specific for lymphocytic choriomeningitis virus epitopes were also found at high frequency in the preinfection naive repertoire. High-frequency naive precursors may allow the T cell response to respond rapidly during the crucial early phases of acute viral infection.
RESUMEN
BACKGROUND: The majority of those infected by ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) during the UK first wave (starting March 2020) did not require hospitalisation. Most had a short-lived mild or asymptomatic infection, while others had symptoms that persisted for weeks or months. We hypothesized that the plasma proteome at the time of first infection would reflect differences in the inflammatory response that linked to symptom severity and duration. METHODS: We performed a nested longitudinal case-control study and targeted analysis of the plasma proteome of 156 healthcare workers (HCW) with and without lab confirmed SARS-CoV-2 infection. Targeted proteomic multiple-reaction monitoring analysis of 91 pre-selected proteins was undertaken in uninfected healthcare workers at baseline, and in infected healthcare workers serially, from 1 week prior to 6 weeks after their first confirmed SARS-CoV-2 infection. Symptom severity and antibody responses were also tracked. Questionnaires at 6 and 12 months collected data on persistent symptoms. FINDINGS: Within this cohort (median age 39 years, interquartile range 30-47 years), 54 healthcare workers (44% male) had PCR or antibody confirmed infection, with the remaining 102 (38% male) serving as uninfected controls. Following the first confirmed SARS-CoV-2 infection, perturbation of the plasma proteome persisted for up to 6 weeks, tracking symptom severity and antibody responses. Differentially abundant proteins were mostly coordinated around lipid, atherosclerosis and cholesterol metabolism pathways, complement and coagulation cascades, autophagy, and lysosomal function. The proteomic profile at the time of seroconversion associated with persistent symptoms out to 12 months. Data are available via ProteomeXchange with identifier PXD036590. INTERPRETATION: Our findings show that non-severe SARS-CoV-2 infection perturbs the plasma proteome for at least 6 weeks. The plasma proteomic signature at the time of seroconversion has the potential to identify which individuals are more likely to suffer from persistent symptoms related to SARS-CoV-2 infection. FUNDING INFORMATION: The COVIDsortium is supported by funding donated by individuals, charitable Trusts, and corporations including Goldman Sachs, Citadel and Citadel Securities, The Guy Foundation, GW Pharmaceuticals, Kusuma Trust, and Jagclif Charitable Trust, and enabled by Barts Charity with support from University College London Hospitals (UCLH) Charity. This work was additionally supported by the Translational Mass Spectrometry Research Group and the Biomedical Research Center (BRC) at Great Ormond Street Hospital.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Proteoma , ProteómicaRESUMEN
Vitamin D deficiency has been reported to associate with the impaired development of antigen-specific responses following vaccination. We aimed to determine whether vitamin D supplements might boost the immunogenicity and efficacy of SARS-CoV-2 vaccination by conducting three sub-studies nested within the CORONAVIT randomised controlled trial, which investigated the effects of offering vitamin D supplements at a dose of 800 IU/day or 3200 IU/day vs. no offer on risk of acute respiratory infections in UK adults with circulating 25-hydroxyvitamin D concentrations <75 nmol/L. Sub-study 1 (n = 2808) investigated the effects of vitamin D supplementation on the risk of breakthrough SARS-CoV-2 infection following two doses of SARS-CoV-2 vaccine. Sub-study 2 (n = 1853) investigated the effects of vitamin D supplementation on titres of combined IgG, IgA and IgM (IgGAM) anti-Spike antibodies in eluates of dried blood spots collected after SARS-CoV-2 vaccination. Sub-study 3 (n = 100) investigated the effects of vitamin D supplementation on neutralising antibody and cellular responses in venous blood samples collected after SARS-CoV-2 vaccination. In total, 1945/2808 (69.3%) sub-study 1 participants received two doses of ChAdOx1 nCoV-19 (Oxford−AstraZeneca); the remainder received two doses of BNT162b2 (Pfizer). Mean follow-up 25(OH)D concentrations were significantly elevated in the 800 IU/day vs. no-offer group (82.5 vs. 53.6 nmol/L; mean difference 28.8 nmol/L, 95% CI 22.8−34.8) and in the 3200 IU/day vs. no offer group (105.4 vs. 53.6 nmol/L; mean difference 51.7 nmol/L, 45.1−58.4). Vitamin D supplementation did not influence the risk of breakthrough SARS-CoV-2 infection in vaccinated participants (800 IU/day vs. no offer: adjusted hazard ratio 1.28, 95% CI 0.89 to 1.84; 3200 IU/day vs. no offer: 1.17, 0.81 to 1.70). Neither did it influence IgGAM anti-Spike titres, neutralising antibody titres or IFN-γ concentrations in the supernatants of S peptide-stimulated whole blood. In conclusion, vitamin D replacement at a dose of 800 or 3200 IU/day effectively elevated 25(OH)D concentrations, but it did not influence the protective efficacy or immunogenicity of SARS-CoV-2 vaccination when given to adults who had a sub-optimal vitamin D status at baseline.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Anticuerpos Neutralizantes , Vacuna BNT162 , COVID-19/prevención & control , ChAdOx1 nCoV-19 , Suplementos Dietéticos , Humanos , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , SARS-CoV-2 , Eficacia de las Vacunas , Vitamina D , VitaminasRESUMEN
Background The COVID-19 pandemic continues to devastate communities all over the world. The aim of this study was to evaluate the efficacy and safety of the test agent as a prophylaxis against SARS-CoV-2 infection in a population of high-risk healthcare workers. Methods The study was a multi-centre, prospective, double blind, randomized, placebo-controlled trial. Key eligibility criteria included absence of significant co-morbidity and no previous SARS-CoV-2 infection or vaccination. Participants were randomised to either the active agent nasal spray or placebo using computer generated random number tables. The nasal spray was administered 3 times daily over a 45 day course. The primary end point was the percentage of subjects who tested positive for IgGS (anti-spike, immunoglobulin G specific to the spike protein of SARS-CoV-2) at day 45. Results Between 16th April 2021 and 26th July 2021, 556 participants were analysed for the primary endpoint (275 Test; 281 Placebo). The test agent significantly reduced SARS-CoV-2 infection compared to placebo [36 cases (13.1%) Vs 97 cases (34.5%); OR 0.29 (95% CI; 0.18-0.45), p < 0.0001]. Fewer clinical symptoms were also seen in the test group [57 cases (17.6%) vs 112 cases (34.6%); OR 0.40, (95% CI; 0.27-0.59), p < 0.0001]. No harmful effects were associated with taking the test agent. Conclusion The test agent significantly reduced SARS-CoV-2 infection in healthcare workers, with 62% fewer infections when compared to placebo. It was found to be safe and well tolerated and offers a novel treatment option for prophylaxis against SARS-CoV-2 infection.
Asunto(s)
COVID-19 , COVID-19/prevención & control , Humanos , Rociadores Nasales , Pandemias/prevención & control , Estudios Prospectivos , SARS-CoV-2RESUMEN
In this population-based cohort of 7538 adults, combined immunoglobulin (Ig) G, IgA, and IgM (IgG/A/M) anti-spike titers measured after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination were predictive of protection against breakthrough SARS-CoV-2 infection. Discrimination was significantly improved by adjustment for factors influencing risk of SARS-CoV-2 exposure, including household overcrowding, public transport use, and visits to indoor public places. Anti-spike IgG/A/M titers showed positive correlation with neutralizing antibody titers (rs = 0.80 [95% confidence interval, .72-.86]; P < .001) and S peptide-stimulated interferon-γ concentrations (rs = 0.31 [.13-.47]; P < .001).
Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Estudios Longitudinales , Pruebas Inmunológicas , Inmunoglobulina G , Anticuerpos AntiviralesRESUMEN
The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.
Asunto(s)
Linfocitos B , Vacuna BNT162 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Linfocitos T , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/uso terapéutico , COVID-19/inmunología , COVID-19/prevención & control , Reacciones Cruzadas , Humanos , Ratones , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunologíaRESUMEN
BACKGROUND: Immunosuppressive treatments inhibit vaccine-induced immunity against SARS-CoV-2. We evaluated whether a 2-week interruption of methotrexate treatment immediately after the COVID-19 vaccine booster improved antibody responses against the S1 receptor-binding domain (S1-RBD) of the SARS-CoV-2 spike protein compared with uninterrupted treatment in patients with immune-mediated inflammatory diseases. METHODS: We did an open-label, prospective, two-arm, parallel-group, multicentre, randomised, controlled, superiority trial in 26 hospitals in the UK. We recruited adults from rheumatology and dermatology clinics who had been diagnosed with an immune-mediated inflammatory disease (eg, rheumatoid arthritis, psoriasis with or without arthritis, axial spondyloarthritis, atopic dermatitis, polymyalgia rheumatica, and systemic lupus erythematosus) and who were taking low-dose weekly methotrexate (≤25 mg per week) for at least 3 months. Participants also had to have received two primary vaccine doses from the UK COVID-19 vaccination programme. We randomly assigned the participants (1:1), using a centralised validated computer randomisation program, to suspend methotrexate treatment for 2 weeks immediately after their COVID-19 booster (suspend methotrexate group) or to continue treatment as usual (continue methotrexate group). Participants, investigators, clinical research staff, and data analysts were unmasked, while researchers doing the laboratory analyses were masked to group assignment. The primary outcome was S1-RBD antibody titres 4 weeks after receiving the COVID-19 booster vaccine dose, assessed in the intention-to-treat population. This trial is registered with ISRCT, ISRCTN11442263; following the pre-planned interim analysis, recruitment was stopped early. FINDINGS: Between Sept 30, 2021 and March 3, 2022, we recruited 340 participants, of whom 254 were included in the interim analysis and had been randomly assigned to one of the two groups: 127 in the continue methotrexate group and 127 in the suspend methotrexate group. Their mean age was 59·1 years, 155 (61%) were female, 130 (51%) had rheumatoid arthritis, and 86 (34%) had psoriasis with or without arthritis. After 4 weeks, the geometric mean S1-RBD antibody titre was 22 750 U/mL (95% CI 19 314-26 796) in the suspend methotrexate group and 10 798 U/mL (8970-12 997) in the continue methotrexate group, with a geometric mean ratio (GMR) of 2·19 (95% CI 1·57-3·04; p<0·0001; mixed-effects model). The increased antibody response in the suspend methotrexate group was consistent across methotrexate dose, administration route, type of immune-mediated inflammatory disease, age, primary vaccination platform, and history of SARS-CoV-2 infection. There were no intervention-related serious adverse events. INTERPRETATION: A 2-week interruption of methotrexate treatment for people with immune-mediated inflammatory diseases resulted in enhanced boosting of antibody responses after COVID-19 vaccination. This intervention is simple, low-cost, and easy to implement, and could potentially translate to increased vaccine efficacy and duration of protection for susceptible groups. FUNDING: National Institute for Health and Care Research.
Asunto(s)
Artritis Reumatoide , COVID-19 , Psoriasis , Adulto , COVID-19/prevención & control , Vacunas contra la COVID-19 , Femenino , Humanos , Inmunización Secundaria , Masculino , Metotrexato/uso terapéutico , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2 , Glicoproteína de la Espiga del CoronavirusRESUMEN
The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is of public health concern in case of vaccine escape. Described are 3 patients with advanced human immunodeficiency virus (HIV)-1 and chronic SARS-CoV-2 infection in whom there is evidence of selection and persistence of novel mutations that are associated with increased transmissibility and immune escape.
Asunto(s)
COVID-19 , Enfermedad Injerto contra Huésped , VIH-1 , Humanos , SARS-CoV-2/genética , VIH-1/genéticaRESUMEN
INTRODUCTION: It is unknown if a temporary break in long-term immune-suppressive treatment after vaccination against COVID-19 improves vaccine response. The objective of this study was to evaluate if a 2-week interruption in low-dose weekly methotrexate treatment after SARS-CoV-2 vaccine boosters enhances the immune response compared with continuing treatment in adults with autoimmune inflammatory conditions. METHODS AND ANALYSIS: An open-label, pragmatic, prospective, parallel group, randomised controlled superiority trial with internal feasibility assessment and nested mechanistic substudy will be conducted in rheumatology and dermatology clinics in approximately 25 UK hospitals. The sample size is 560, randomised 1:1 to intervention and usual care arms. The main outcome measure is anti-spike receptor-binding domain (RBD) antibody level, collected at prebooster (baseline), 4 weeks (primary outcome) and 12 weeks (secondary outcome) post booster vaccination. Other secondary outcome measures are patient global assessments of disease activity, disease flares and their treatment, EuroQol 5- dimention 5-level (EQ-5D-5L), self-reported adherence with advice to interrupt or continue methotrexate, neutralising antibody titre against SARS-CoV-2 (mechanistic substudy) and oral methotrexate biochemical adherence (mechanistic substudy). Analysis of B-cell memory and T-cell responses at baseline and weeks 4 and 12 will be investigated subject to obtaining additional funding. The principal analysis will be performed on the groups as randomised (ie, intention to treat). The difference between the study arms in anti-spike RBD antibody level will be estimated using mixed effects model, allowing for repeated measures clustered within participants. The models will be adjusted for randomisation factors and prior SARS-CoV-2 infection status. ETHICS AND DISSEMINATION: This study was approved by the Leeds West Research Ethics Committee and Health Research Authority (REC reference: 21/HRA/3483, IRAS 303827). Participants will be required to give written informed consent before taking part in the trial. Dissemination will be via peer review publications, newsletters and conferences. Results will be communicated to policymakers. TRIAL REGISTRATION NUMBER: ISRCTN11442263.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Metotrexato/uso terapéutico , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2RESUMEN
Effective control of SARS-CoV-2 infection on primary exposure may reveal correlates of protective immunity to future variants, but we lack insights into immune responses before or at the time virus is first detected. We use blood transcriptomics, multiparameter flow cytometry, and T cell receptor (TCR) sequencing spanning the time of incident non-severe infection in unvaccinated virus-naive individuals to identify rapid type 1 interferon (IFN) responses common to other acute respiratory viruses and cell proliferation responses that discriminate SARS-CoV-2 from other viruses. These peak by the time the virus is first detected and sometimes precede virus detection. Cell proliferation is most evident in CD8 T cells and associated with specific expansion of SARS-CoV-2-reactive TCRs, in contrast to virus-specific antibodies, which lag by 1-2 weeks. Our data support a protective role for early type 1 IFN and CD8 T cell responses, with implications for development of universal T cell vaccines.
Asunto(s)
COVID-19 , Interferón Tipo I , Linfocitos T CD8-positivos , Citometría de Flujo , Humanos , SARS-CoV-2/genéticaRESUMEN
SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.
Asunto(s)
COVID-19 , Anticuerpos Antivirales , COVID-19/genética , Vacunas contra la COVID-19 , Cadenas HLA-DRB1/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , SARS-CoV-2RESUMEN
The impact of the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infecting strain on downstream immunity to heterologous variants of concern (VOCs) is unknown. Studying a longitudinal healthcare worker cohort, we found that after three antigen exposures (infection plus two vaccine doses), S1 antibody, memory B cells, and heterologous neutralization of B.1.351, P.1, and B.1.617.2 plateaued, whereas B.1.1.7 neutralization and spike T cell responses increased. Serology using the Wuhan Hu-1 spike receptor binding domain poorly predicted neutralizing immunity against VOCs. Neutralization potency against VOCs changed with heterologous virus encounter and number of antigen exposures. Neutralization potency fell differentially depending on targeted VOCs over the 5 months from the second vaccine dose. Heterologous combinations of spike encountered during infection and vaccination shape subsequent cross-protection against VOC, with implications for future-proof next-generation vaccines.
Asunto(s)
Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Vacuna BNT162/administración & dosificación , Vacunas contra la COVID-19/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Protección Cruzada , Femenino , Personal de Salud , Humanos , Estudios Longitudinales , Masculino , Células B de Memoria/inmunología , Mutación , Fosfoproteínas/inmunología , Dominios Proteicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología , Vacunación , Potencia de la VacunaRESUMEN
Individuals with potential exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) do not necessarily develop PCR or antibody positivity, suggesting that some individuals may clear subclinical infection before seroconversion. T cells can contribute to the rapid clearance of SARS-CoV-2 and other coronavirus infections1-3. Here we hypothesize that pre-existing memory T cell responses, with cross-protective potential against SARS-CoV-2 (refs. 4-11), would expand in vivo to support rapid viral control, aborting infection. We measured SARS-CoV-2-reactive T cells, including those against the early transcribed replication-transcription complex (RTC)12,13, in intensively monitored healthcare workers (HCWs) who tested repeatedly negative according to PCR, antibody binding and neutralization assays (seronegative HCWs (SN-HCWs)). SN-HCWs had stronger, more multispecific memory T cells compared with a cohort of unexposed individuals from before the pandemic (prepandemic cohort), and these cells were more frequently directed against the RTC than the structural-protein-dominated responses observed after detectable infection (matched concurrent cohort). SN-HCWs with the strongest RTC-specific T cells had an increase in IFI27, a robust early innate signature of SARS-CoV-2 (ref. 14), suggesting abortive infection. RNA polymerase within RTC was the largest region of high sequence conservation across human seasonal coronaviruses (HCoV) and SARS-CoV-2 clades. RNA polymerase was preferentially targeted (among the regions tested) by T cells from prepandemic cohorts and SN-HCWs. RTC-epitope-specific T cells that cross-recognized HCoV variants were identified in SN-HCWs. Enriched pre-existing RNA-polymerase-specific T cells expanded in vivo to preferentially accumulate in the memory response after putative abortive compared to overt SARS-CoV-2 infection. Our data highlight RTC-specific T cells as targets for vaccines against endemic and emerging Coronaviridae.
Asunto(s)
Infecciones Asintomáticas , COVID-19/inmunología , COVID-19/virología , ARN Polimerasas Dirigidas por ADN/inmunología , Células T de Memoria/inmunología , SARS-CoV-2/inmunología , Seroconversión , Proliferación Celular , Estudios de Cohortes , ARN Polimerasas Dirigidas por ADN/metabolismo , Evolución Molecular , Femenino , Personal de Salud , Humanos , Masculino , Proteínas de la Membrana/inmunología , Células T de Memoria/citología , Complejos Multienzimáticos/inmunología , SARS-CoV-2/enzimología , SARS-CoV-2/crecimiento & desarrollo , Transcripción Genética/inmunologíaRESUMEN
BACKGROUND: We hypothesised that host-response biomarkers of viral infections might contribute to early identification of individuals infected with SARS-CoV-2, which is critical to breaking the chains of transmission. We aimed to evaluate the diagnostic accuracy of existing candidate whole-blood transcriptomic signatures for viral infection to predict positivity of nasopharyngeal SARS-CoV-2 PCR testing. METHODS: We did a nested case-control diagnostic accuracy study among a prospective cohort of health-care workers (aged ≥18 years) at St Bartholomew's Hospital (London, UK) undergoing weekly blood and nasopharyngeal swab sampling for whole-blood RNA sequencing and SARS-CoV-2 PCR testing, when fit to attend work. We identified candidate blood transcriptomic signatures for viral infection through a systematic literature search. We searched MEDLINE for articles published between database inception and Oct 12, 2020, using comprehensive MeSH and keyword terms for "viral infection", "transcriptome", "biomarker", and "blood". We reconstructed signature scores in blood RNA sequencing data and evaluated their diagnostic accuracy for contemporaneous SARS-CoV-2 infection, compared with the gold standard of SARS-CoV-2 PCR testing, by quantifying the area under the receiver operating characteristic curve (AUROC), sensitivities, and specificities at a standardised Z score of at least 2 based on the distribution of signature scores in test-negative controls. We used pairwise DeLong tests compared with the most discriminating signature to identify the subset of best performing biomarkers. We evaluated associations between signature expression, viral load (using PCR cycle thresholds), and symptom status visually and using Spearman rank correlation. The primary outcome was the AUROC for discriminating between samples from participants who tested negative throughout the study (test-negative controls) and samples from participants with PCR-confirmed SARS-CoV-2 infection (test-positive participants) during their first week of PCR positivity. FINDINGS: We identified 20 candidate blood transcriptomic signatures of viral infection from 18 studies and evaluated their accuracy among 169 blood RNA samples from 96 participants over 24 weeks. Participants were recruited between March 23 and March 31, 2020. 114 samples were from 41 participants with SARS-CoV-2 infection, and 55 samples were from 55 test-negative controls. The median age of participants was 36 years (IQR 27-47) and 69 (72%) of 96 were women. Signatures had little overlap of component genes, but were mostly correlated as components of type I interferon responses. A single blood transcript for IFI27 provided the highest accuracy for discriminating between test-negative controls and test-positive individuals at the time of their first positive SARS-CoV-2 PCR result, with AUROC of 0·95 (95% CI 0·91-0·99), sensitivity 0·84 (0·70-0·93), and specificity 0·95 (0·85-0·98) at a predefined threshold (Z score >2). The transcript performed equally well in individuals with and without symptoms. Three other candidate signatures (including two to 48 transcripts) had statistically equivalent discrimination to IFI27 (AUROCs 0·91-0·95). INTERPRETATION: Our findings support further urgent evaluation and development of blood IFI27 transcripts as a biomarker for early phase SARS-CoV-2 infection for screening individuals at high risk of infection, such as contacts of index cases, to facilitate early case isolation and early use of antiviral treatments as they emerge. FUNDING: Barts Charity, Wellcome Trust, and National Institute of Health Research.