Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461563

RESUMEN

The organization of chromatin - including the positions of nucleosomes and the binding of other proteins to DNA - helps define transcriptional profiles in eukaryotic organisms. While techniques like ChIP-Seq and MNase-Seq can map protein-DNA and nucleosome localization separately, assays designed to simultaneously capture nucleosome positions and protein-DNA interactions can produce a detailed picture of the chromatin landscape. Most assays that monitor chromatin organization and protein binding rely on antibodies, which often exhibit nonspecific binding, and/or the addition of bulky adducts to the DNA-binding protein being studied, which can affect their expression and activity. Here, we describe SpyCatcher Linked Targeting of Chromatin Endogenous Cleavage (SpLiT-ChEC), where a 13-amino acid SpyTag peptide, appended to a protein of interest, serves as a highly-specific targeting moiety for in situ enzymatic digestion. The SpyTag/SpyCatcher system forms a covalent bond, linking the target protein and a co-expressed MNase-SpyCatcher fusion construct. SpyTagged proteins are expressed from endogenous loci, whereas MNase-SpyCatcher expression is induced immediately before harvesting cultures. MNase is activated with high concentrations of calcium, which primarily digests DNA near target protein binding sites. By sequencing the DNA fragments released by targeted MNase digestion, we found that this method recovers information on protein binding and proximal nucleosome positioning. SpLiT-ChEC provides precise temporal control that we anticipate can be used to monitor chromatin under various conditions and at distinct points in the cell cycle.

2.
PLoS Genet ; 18(12): e1010559, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542663

RESUMEN

Upon glucose starvation, S. cerevisiae shows a dramatic alteration in transcription, resulting in wide-scale repression of most genes and activation of some others. This coincides with an arrest of cellular proliferation. A subset of such cells enters quiescence, a reversible non-dividing state. Here, we demonstrate that the conserved transcriptional corepressor Tup1 is critical for transcriptional repression after glucose depletion. We show that Tup1-Ssn6 binds new targets upon glucose depletion, where it remains as the cells enter the G0 phase of the cell cycle. In addition, we show that Tup1 represses a variety of glucose metabolism and transport genes. We explored how Tup1 mediated repression is accomplished and demonstrated that Tup1 coordinates with the Rpd3L complex to deacetylate H3K23. We found that Tup1 coordinates with Isw2 to affect nucleosome positions at glucose transporter HXT family genes during G0. Finally, microscopy revealed that a quarter of cells with a Tup1 deletion contain multiple DAPI puncta. Taken together, these findings demonstrate the role of Tup1 in transcriptional reprogramming in response to environmental cues leading to the quiescent state.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Glucosa/genética , Glucosa/metabolismo , Regulación Fúngica de la Expresión Génica
3.
STAR Protoc ; 2(2): 100486, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34041500

RESUMEN

MNase-seq (micrococcal nuclease sequencing) is used to map nucleosome positions in eukaryotic genomes to study the relationship between chromatin structure and DNA-dependent processes. Current protocols require at least two days to isolate nucleosome-protected DNA fragments. We have developed a streamlined protocol for S. cerevisiae and other fungi which takes only three hours. Modified protocols were developed for wild fungi and mammalian cells. This method for rapidly producing sequencing-ready nucleosome footprints from several organisms makes MNase-seq faster and easier, with less chemical waste.


Asunto(s)
Huella de ADN/métodos , Nucleosomas , Análisis de Secuencia de ADN/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , ADN/química , ADN/genética , ADN/metabolismo , Genómica , Nucleasa Microcócica/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética
4.
Elife ; 102021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33576335

RESUMEN

Eukaryotic genomes are organized dynamically through the repositioning of nucleosomes. Isw2 is an enzyme that has been previously defined as a genome-wide, nonspecific nucleosome spacing factor. Here, we show that Isw2 instead acts as an obligately targeted nucleosome remodeler in vivo through physical interactions with sequence-specific factors. We demonstrate that Isw2-recruiting factors use small and previously uncharacterized epitopes, which direct Isw2 activity through highly conserved acidic residues in the Isw2 accessory protein Itc1. This interaction orients Isw2 on target nucleosomes, allowing for precise nucleosome positioning at targeted loci. Finally, we show that these critical acidic residues have been lost in the Drosophila lineage, potentially explaining the inconsistently characterized function of Isw2-like proteins. Altogether, these data suggest an 'interacting barrier model,' where Isw2 interacts with a sequence-specific factor to accurately and reproducibly position a single, targeted nucleosome to define the precise border of phased chromatin arrays.


DNA encodes the genetic instructions for life in a long, flexible molecular chain that is packaged up neatly to fit inside cells. Short sections of DNA are wound around proteins to form bundles called nucleosomes, and then spun into chromatin fibres, a more compact form of DNA. While nucleosomes are a fundamental part of this space-saving packaging process, they also play a key regulatory role in gene expression, which is where genes are decoded into working proteins. Placing nucleosomes at regular intervals along DNA invariably controls which parts of the DNA ­ and which genes ­ the cell's machinery can access and 'read' to make proteins. But the nucleosomes' positions are not fixed, and gene expression is a dynamic process. The cell often uncoils and repackages its DNA while molecular motors called chromatin remodelling proteins move nucleosomes up and down the DNA, exposing some genes and obstructing others. One group of chromatin remodelling proteins are called Imitation Switch (ISWI) complexes. It has long been thought that these complexes position nucleosomes with little regard to the underlying DNA sequence or the genes encoded, that is to say in a non-specific way. However, this theory has not been thoroughly tested. It is possible that ISWI complexes actually place nucleosomes on certain parts of DNA at particular times in an organism's development, or in response to other environmental factors. Except how such precision is achieved remains unknown. To test this alternative theory of nucleosome positioning, Donovan et al. studied ISWI proteins and nucleosomes in common baker's yeast. This involved systematically removing sections of ISWI proteins to see whether the complexes could still position nucleosomes, and which parts of the proteins where essential for the job. By doing so, Donovan et al. identified multiple 'targeting' proteins that bind to ISWI proteins and deliver the complexes to specific target sequences of DNA. From there, the complex remodels the nucleosome, positioning it at a specific distance from its landing site on DNA, as further experiments showed. This research provides a new model for explaining how nucleosomes are positioned to package DNA and control gene expression. Donovan et al. have identified a new mechanism of interaction between nucleosomes and chromatin remodelling proteins of the ISWI variety. It is possible that more interactions of this kind will be discovered with further research.


Asunto(s)
Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Adenosina Trifosfatasas/metabolismo , Animales , Drosophila/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
5.
Cell Rep ; 29(8): 2520-2535.e4, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31747617

RESUMEN

Regulation of chromatin structure is essential for controlling access of DNA to factors that require association with specific DNA sequences. Here we describe the development and validation of engineered chromatin remodeling proteins (E-ChRPs) for inducing programmable changes in nucleosome positioning by design. We demonstrate that E-ChRPs function both in vitro and in vivo to specifically reposition target nucleosomes and entire nucleosomal arrays. We show that induced, systematic positioning of nucleosomes over yeast Ume6 binding sites leads to Ume6 exclusion, hyperacetylation, and transcriptional induction at target genes. We also show that programmed global loss of nucleosome-free regions at Reb1 targets is generally inhibitory with mildly repressive transcriptional effects. E-ChRPs are compatible with multiple targeting modalities, including the SpyCatcher and dCas9 moieties, resulting in high versatility and enabling diverse future applications. Thus, engineered chromatin remodeling proteins represent a simple and robust means to probe and disrupt DNA-dependent processes in different chromatin contexts.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Nucleosomas/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 215-221, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368280

RESUMEN

S100A1 is a member of the S100 family of Ca2+-binding proteins and regulates several cellular processes, including those involved in Ca2+ signaling and cardiac and skeletal muscle function. In Alzheimer's disease, brain S100A1 is overexpressed and gives rise to disease pathologies, making it a potential therapeutic target. The 2.25 Šresolution crystal structure of Ca2+-S100A1 is solved here and is compared with the structures of other S100 proteins, most notably S100B, which is a highly homologous S100-family member that is implicated in the progression of malignant melanoma. The observed structural differences in S100A1 versus S100B provide insights regarding target protein-binding specificity and for targeting these two S100 proteins in human diseases using structure-based drug-design approaches.


Asunto(s)
Calcio/química , Subunidad beta de la Proteína de Unión al Calcio S100/química , Proteínas S100/química , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
7.
Nat Nanotechnol ; 12(8): 813-820, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28416815

RESUMEN

An emerging approach for treating cancer involves programming patient-derived T cells with genes encoding disease-specific chimeric antigen receptors (CARs), so that they can combat tumour cells once they are reinfused. Although trials of this therapy have produced impressive results, the in vitro methods they require to generate large numbers of tumour-specific T cells are too elaborate for widespread application to treat cancer patients. Here, we describe a method to quickly program circulating T cells with tumour-recognizing capabilities, thus avoiding these complications. Specifically, we demonstrate that DNA-carrying nanoparticles can efficiently introduce leukaemia-targeting CAR genes into T-cell nuclei, thereby bringing about long-term disease remission. These polymer nanoparticles are easy to manufacture in a stable form, which simplifies storage and reduces cost. Our technology may therefore provide a practical, broadly applicable treatment that can generate anti-tumour immunity 'on demand' for oncologists in a variety of settings.


Asunto(s)
ADN/química , Portadores de Fármacos , Técnicas de Transferencia de Gen , Inmunidad Celular/efectos de los fármacos , Leucemia/terapia , Nanopartículas/química , Receptores Quiméricos de Antígenos , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Inmunidad Celular/genética , Leucemia/genética , Leucemia/inmunología , Leucemia/patología , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología
8.
J Med Chem ; 59(2): 592-608, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26727270

RESUMEN

The drug pentamidine inhibits calcium-dependent complex formation with p53 ((Ca)S100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure-activity relationship (SAR) studies were therefore completed here with 23 pentamidine analogues, and X-ray structures of (Ca)S100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the "FF-gate". For symmetric pentamidine analogues ((Ca)S100B·5a, (Ca)S100B·6b) a channel between sites 1 and 2 on S100B was occluded by residue Phe88, but for an asymmetric pentamidine analogue ((Ca)S100B·17), this same channel was open. The (Ca)S100B·17 structure illustrates, for the first time, a pentamidine analog capable of binding the "open" form of the "FF-gate" and provides a means to block all three "hot spots" on (Ca)S100B, which will impact next generation (Ca)S100B·p53 inhibitor design.


Asunto(s)
Subunidad beta de la Proteína de Unión al Calcio S100/antagonistas & inhibidores , Subunidad beta de la Proteína de Unión al Calcio S100/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Bovinos , Línea Celular Tumoral , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Modelos Moleculares , Pentamidina/análogos & derivados , Pentamidina/química , Pentamidina/farmacología , Conformación Proteica , Ratas , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/efectos de los fármacos
9.
Future Med Chem ; 5(1): 97-109, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23256816

RESUMEN

Malignant melanoma continues to be an extremely fatal cancer due to a lack of viable treatment options for patients. The calcium-binding protein S100B has long been used as a clinical biomarker, aiding in malignant melanoma staging and patient prognosis. However, the discovery of p53 as a S100B target and the consequent impact on cell apoptosis redirected research efforts towards the development of inhibitors of this S100B-p53 interaction. Several approaches, including computer-aided drug design, fluorescence polarization competition assays, NMR, x-ray crystallography and cell-based screens have been performed to identify compounds that block the S100B-p53 association, reactivate p53 transcriptional activities and induce cancer cell death. Eight promising compounds, including pentamidine, are presented in this review and the potential for future modifications is discussed. Synthesis of compound derivatives will likely exhibit increased S100B affinity and mimic important S100B-target dynamic properties that will result in high specificity.


Asunto(s)
Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Proteínas S100/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Diseño Asistido por Computadora , Cristalografía por Rayos X , Diseño de Fármacos , Polarización de Fluorescencia , Genes p53 , Humanos , Espectroscopía de Resonancia Magnética , Subunidad beta de la Proteína de Unión al Calcio S100
10.
ACS Med Chem Lett ; 3(12): 975-979, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23264854

RESUMEN

Molecular Dynamics simulations of the pentamidine-S100B complex, where two molecules of pentamidine bind per monomer of S100B, were performed in an effort to determine what properties would be desirable in a pentamidine-derived compound as an inhibitor for S100B. These simulations predicted that increasing the linker length of the compound would allow a single molecule to span both pentamidine binding sites on the protein. The resulting compound, SBi4211 (also known as heptamidine), was synthesized and experiments to study its inhibition of S100B were performed. The 1.65 Å X-ray crystal structure was determined for Ca(2+)-S100B-heptamdine and gives high-resolution information about key contacts that facilitate the interaction between heptamidine and S100B. Additionally, NMR HSQC experiments with both compounds show that heptamidine interacts with the same region of S100B as pentamidine. Heptamidine is able to selectively kill melanoma cells with S100B over those without S100B, indicating that its binding to S100B has an inhibitory effect and that this compound may be useful in designing higher-affinity S100B inhibitors as a treatment for melanoma and other S100B-related cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA