Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 14(4): 2738-2746, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617143

RESUMEN

Background: Diffusion magnetic resonance imaging (MRI) allows for the quantification of water diffusion properties in soft tissues. The goal of this study was to characterize the 3D collagen fiber network in the porcine meniscus using high angular resolution diffusion imaging (HARDI) acquisition with both diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI). Methods: Porcine menisci (n=7) were scanned ex vivo using a three-dimensional (3D) HARDI spin-echo pulse sequence with an isotropic resolution of 500 µm at 7.0 Tesla. Both DTI and GQI reconstruction techniques were used to quantify the collagen fiber alignment and visualize the complex collagen network of the meniscus. The MRI findings were validated with conventional histology. Results: DTI and GQI exhibited distinct fiber orientation maps in the meniscus using the same HARDI acquisition. We found that crossing fibers were only resolved with GQI, demonstrating the advantage of GQI over DTI to visualize the complex collagen fiber orientation in the meniscus. Furthermore, the MRI findings were consistent with conventional histology. Conclusions: HARDI acquisition with GQI reconstruction more accurately resolves the complex 3D collagen architecture of the meniscus compared to DTI reconstruction. In the future, these technologies have the potential to nondestructively assess both normal and abnormal meniscal structure.

2.
Osteoarthr Cartil Open ; 5(3): 100376, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719442

RESUMEN

Objective: To examine the effects of a 6-month weight loss intervention on physical function, inflammatory biomarkers, and metabolic biomarkers in both those with and without osteoarthritis (OA). Design: 59 individuals ≥60 years old with obesity and a functional impairment were enrolled into this IRB approved clinical trial and randomized into one of two 6-month weight loss arms: a higher protein hypocaloric diet or a standard protein hypocaloric diet. All participants were prescribed individualized 500-kcal daily-deficit diets, with a goal of 10% weight loss. Additionally, participants participated in three, low-intensity, exercise sessions per week. Physical function, serum biomarkers and body composition data were assessed at the baseline and 6-month timepoints. Statistical analyses assessed the relationships between biomarkers, physical function, body composition, and OA status as a result of the intervention. Results: No group effects of dietary intervention were detected on any outcome measures (multiple p â€‹> â€‹0.05). During the 6-month trial, participants lost 6.2 â€‹± â€‹4.0% of their bodyweight (p â€‹< â€‹0.0001) and experienced improved physical function on the Short-Performance-Physical-Battery (p â€‹< â€‹0.0001), 8-foot-up-and-go (p â€‹< â€‹0.0001), and time to complete 10-chair-stands (p â€‹< â€‹0.0001). Adiponectin concentrations (p â€‹= â€‹0.0480) were elevated, and cartilage oligomeric matrix protein (COMP) concentrations (p â€‹< â€‹0.0001) were reduced; further analysis revealed that reductions in serum COMP concentrations were greater in OA-negative individuals. Conclusions: These results suggest that weight loss in older adults with and without OA may provide a protective effect to cartilage and OA. In particular, OA-negative individuals may be able to mitigate changes associated with OA through weight loss.

3.
J Orthop Res ; 41(7): 1618-1623, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36515295

RESUMEN

Orthopaedic research, and biomedical research in general, has made enormous strides to develop treatments for conditions long thought to be inevitable or untreatable; however, there is growing concern about the quality of published research. Considerable efforts have been made to improve overall research quality, integrity, and rigor, including meaningful proposals focused on transparency of reporting, appropriate use of statistics, and reporting of negative results. However, we believe that there is another key component to rigor and reproducibility that is not discussed sufficiently-analytical validation and quality control (QC). In this commentary, we discuss QC and method validation principles and practices that are systematically applied in the clinical laboratory setting to verify and monitor the analytical performance of quantitative assays, and the utility of applying similar practices to biochemical assays in the orthopaedic research setting. This commentary includes (1) recommendations for validation and QC practices, including examples of assay performance limitations uncovered by validation experiments performed in our laboratory, and (2) a description of an ongoing QC program developed to monitor the ongoing performance of commonly used assays in our lab. We hope that this commentary and the examples presented here will be thought-provoking and inspire further discussion and adaptation of analytical validation and QC procedures to advance our shared pursuit of high-quality, rigorous, and reproducible orthopaedic research.


Asunto(s)
Investigación Biomédica , Ortopedia , Reproducibilidad de los Resultados , Control de Calidad , Proyectos de Investigación
4.
Curr Rheumatol Rep ; 25(2): 35-46, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36479669

RESUMEN

PURPOSE OF REVIEW: Meniscus injury often leads to joint degeneration and post-traumatic osteoarthritis (PTOA) development. Therefore, the purpose of this review is to outline the current understanding of biomechanical and biological repercussions following meniscus injury and how these changes impact meniscus repair and PTOA development. Moreover, we identify key gaps in knowledge that must be further investigated to improve meniscus healing and prevent PTOA. RECENT FINDINGS: Following meniscus injury, both biomechanical and biological alterations frequently occur in multiple tissues in the joint. Biomechanically, meniscus tears compromise the ability of the meniscus to transfer load in the joint, making the cartilage more vulnerable to increased strain. Biologically, the post-injury environment is often characterized by an increase in pro-inflammatory cytokines, catabolic enzymes, and immune cells. These multi-faceted changes have a significant interplay and result in an environment that opposes tissue repair and contributes to PTOA development. Additionally, degenerative changes associated with OA may cause a feedback cycle, negatively impacting the healing capacity of the meniscus. Strides have been made towards understanding post-injury biological and biomechanical changes in the joint, their interplay, and how they affect healing and PTOA development. However, in order to improve clinical treatments to promote meniscus healing and prevent PTOA development, there is an urgent need to understand the physiologic changes in the joint following injury. In particular, work is needed on the in vivo characterization of the temporal biomechanical and biological changes that occur in patients following meniscus injury and how these changes contribute to PTOA development.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Cartílago Articular , Menisco , Osteoartritis , Humanos , Osteoartritis/etiología , Osteoartritis/metabolismo , Menisco/lesiones , Citocinas/metabolismo , Artroplastia de Reemplazo de Rodilla/efectos adversos , Cartílago Articular/metabolismo
5.
Am J Sports Med ; 50(7): 1997-2006, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35482438

RESUMEN

BACKGROUND: Posttraumatic inflammation after joint injury, ranging from sprains to articular fracture, contributes to the development of arthritis, and the administration of interleukin 1 (IL-1) receptor antagonist (IL-1Ra) is a potential intervention to mitigate this response. Although IL-1Ra mitigates cartilage degenerative changes induced by IL-1, lidocaine is used for local pain management in acute joint injury. Intra-articular delivery of both drugs in combination would be a novel and possibly disease-modifying treatment. However, it is not known whether the interaction with lidocaine at clinical concentrations (1%) would alter the efficacy of IL-1Ra to protect cartilage from the catabolic effects of IL-1. HYPOTHESIS: Treatment of articular cartilage with IL-1Ra in combination with a clinically relevant concentration of lidocaine (1%) will inhibit the catabolic effects of IL-1α in a manner similar to treatment with IL-1Ra alone. STUDY DESIGN: Controlled laboratory study. METHODS: Fresh porcine cartilage explants were harvested, challenged with IL-1α, and incubated for 72 hours with IL-1Ra or a combination of IL-1Ra and lidocaine. The primary outcome was total sulfated glycosaminoglycan (sGAG) release. Additional experiments assessed the effect of storage temperature and premixing of IL-1Ra and lidocaine on sGAG release. All explants were histologically assessed for cartilage degradation using a modified Mankin grading scale. RESULTS: The combination of IL-1Ra and lidocaine, premixed at various time points and stored at room temperature or 4°C, was as effective as IL-1Ra alone at inhibiting IL-1α-mediated sGAG release. Mankin histopathology scores supported these findings. CONCLUSION: Our hypothesis was supported, and results indicated that the combination of IL-1Ra and lidocaine was as efficacious as IL-1Ra treatment alone in acutely mitigating biological cartilage injury due to IL-1α in an explant model. CLINICAL SIGNIFICANCE: The combination of IL-1Ra and lidocaine is stable when reagents are stored in advance of administration at varying temperatures, providing clinically relevant information about storage of medications. The ability to premix and store this drug combination for intra-articular delivery may provide a novel treatment after joint injury to provide pain relief and block inflammation-induced catabolism of joint tissues.


Asunto(s)
Enfermedades de los Cartílagos , Cartílago Articular , Animales , Enfermedades de los Cartílagos/patología , Cartílago Articular/patología , Humanos , Inflamación/patología , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Lidocaína/metabolismo , Lidocaína/farmacología , Porcinos
6.
Front Bioeng Biotechnol ; 10: 837619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299636

RESUMEN

Meniscus injuries are highly prevalent, and both meniscus injury and subsequent surgery are linked to the development of post-traumatic osteoarthritis (PTOA). Although the pathogenesis of PTOA remains poorly understood, the inflammatory cytokine IL-1 is elevated in synovial fluid following acute knee injuries and causes degradation of meniscus tissue and inhibits meniscus repair. Dynamic mechanical compression of meniscus tissue improves integrative meniscus repair in the presence of IL-1 and dynamic tensile strain modulates the response of meniscus cells to IL-1. Despite the promising observed effects of physiologic mechanical loading on suppressing inflammatory responses of meniscus cells, there is a lack of knowledge on the global effects of loading on meniscus transcriptomic profiles. In this study, we compared two established models of physiologic mechanical stimulation, dynamic compression of tissue explants and cyclic tensile stretch of isolated meniscus cells, to identify conserved responses to mechanical loading. RNA sequencing was performed on loaded and unloaded meniscus tissue or isolated cells from inner and outer zones, with and without IL-1. Overall, results from both models showed significant modulation of inflammation-related pathways with mechanical stimulation. Anti-inflammatory effects of loading were well-conserved between the tissue compression and cell stretch models for inner zone; however, the cell stretch model resulted in a larger number of differentially regulated genes. Our findings on the global transcriptomic profiles of two models of mechanical stimulation lay the groundwork for future mechanistic studies of meniscus mechanotransduction, which may lead to the discovery of novel therapeutic targets for the treatment of meniscus injuries.

7.
Arthritis Res Ther ; 23(1): 280, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34736523

RESUMEN

BACKGROUND: Anterior cruciate ligament (ACL) and meniscus tears are common knee injuries. Despite the high rate of post-traumatic osteoarthritis (PTOA) following these injuries, the contributing factors remain unclear. In this study, we characterized the immune cell profiles of normal and injured joints at the time of ACL and meniscal surgeries. METHODS: Twenty-nine patients (14 meniscus-injured and 15 ACL-injured) undergoing ACL and/or meniscus surgery but with a normal contralateral knee were recruited. During surgery, synovial fluid was aspirated from both normal and injured knees. Synovial fluid cells were pelleted, washed, and stained with an antibody cocktail consisting of fluorescent antibodies for cell surface proteins. Analysis of immune cells in the synovial fluid was performed by polychromatic flow cytometry. A broad spectrum immune cell panel was used in the first 10 subjects. Based on these results, a T cell-specific panel was used in the subsequent 19 subjects. RESULTS: Using the broad spectrum immune cell panel, we detected significantly more total viable cells and CD3 T cells in the injured compared to the paired normal knees. In addition, there were significantly more injured knees with T cells above a 500-cell threshold. Within the injured knees, CD4 and CD8 T cells were able to be differentiated into subsets. The frequency of total CD4 T cells was significantly different among injury types, but no statistical differences were detected among CD4 and CD8 T cell subsets by injury type. CONCLUSIONS: Our findings provide foundational data showing that ACL and meniscus injuries induce an immune cell-rich microenvironment that consists primarily of T cells with multiple T helper phenotypes. Future studies investigating the relationship between immune cells and joint degeneration may provide an enhanced understanding of the pathophysiology of PTOA following joint injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Cartílago Articular , Menisco , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Humanos , Articulación de la Rodilla , Imagen por Resonancia Magnética , Líquido Sinovial
8.
J Biomech ; 129: 110771, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34627074

RESUMEN

Changes in cartilage structure and composition are commonly observed during the progression of osteoarthritis (OA). Importantly, quantitative magnetic resonance imaging (MRI) methods, such as T1rho relaxation imaging, can noninvasively provide in vivo metrics that reflect changes in cartilage composition and therefore have the potential for use in early OA detection. Changes in cartilage mechanical properties are also hallmarks of OA cartilage; thus, measurement of cartilage mechanical properties may also be beneficial for earlier OA detection. However, the relative predictive ability of compositional versus mechanical properties in detecting OA has yet to be determined. Therefore, we developed logistic regression models predicting OA status in an ex vivo environment using several mechanical and compositional metrics to assess which metrics most effectively predict OA status. Specifically, in this study the compositional metric analyzed was the T1rho relaxation time, while the mechanical metrics analyzed were the stiffness and recovery (defined as a measure of how quickly cartilage returns to its original shape after loading) of the cartilage. Cartilage recovery had the best predictive ability of OA status both alone and in a multivariate model including the T1rho relaxation time. These findings highlight the potential of cartilage recovery as a non-invasive marker of in vivo cartilage health and motivate future investigation of this metric clinically.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Benchmarking , Biomarcadores , Cartílago Articular/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758095

RESUMEN

Osteoarthritis (OA) is a painful and debilitating condition of synovial joints without any disease-modifying therapies [A. M. Valdes, T. D. Spector, Nat. Rev. Rheumatol. 7, 23-32 (2011)]. We previously identified mechanosensitive PIEZO channels, PIEZO1 and PIEZO2, both expressed in articular cartilage, to function in chondrocyte mechanotransduction in response to injury [W. Lee et al., Proc. Natl. Acad. Sci. U.S.A. 111, E5114-E5122 (2014); W. Lee, F. Guilak, W. Liedtke, Curr. Top. Membr. 79, 263-273 (2017)]. We therefore asked whether interleukin-1-mediated inflammatory signaling, as occurs in OA, influences Piezo gene expression and channel function, thus indicative of maladaptive reprogramming that can be rationally targeted. Primary porcine chondrocyte culture and human osteoarthritic cartilage tissue were studied. We found that interleukin-1α (IL-1α) up-regulated Piezo1 in porcine chondrocytes. Piezo1 expression was significantly increased in human osteoarthritic cartilage. Increased Piezo1 expression in chondrocytes resulted in a feed-forward pathomechanism whereby increased function of Piezo1 induced excess intracellular Ca2+ at baseline and in response to mechanical deformation. Elevated resting state Ca2+ in turn rarefied the F-actin cytoskeleton and amplified mechanically induced deformation microtrauma. As intracellular substrates of this OA-related inflammatory pathomechanism, in porcine articular chondrocytes exposed to IL-1α, we discovered that enhanced Piezo1 expression depended on p38 MAP-kinase and transcription factors HNF4 and ATF2/CREBP1. CREBP1 directly bound to the proximal PIEZO1 gene promoter. Taken together, these signaling and genetic reprogramming events represent a detrimental Ca2+-driven feed-forward mechanism that can be rationally targeted to stem the progression of OA.


Asunto(s)
Condrocitos/metabolismo , Interleucina-1alfa/metabolismo , Canales Iónicos/genética , Mecanotransducción Celular/inmunología , Osteoartritis/inmunología , Factor de Transcripción Activador 2/metabolismo , Animales , Calcio/metabolismo , Cartílago Articular/citología , Cartílago Articular/inmunología , Cartílago Articular/patología , Células Cultivadas , Condrocitos/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Osteoartritis/genética , Osteoartritis/patología , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , Sus scrofa , Regulación hacia Arriba/inmunología
10.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33571125

RESUMEN

Mechanobiologic signals regulate cellular responses under physiologic and pathologic conditions. Using synthetic biology and tissue engineering, we developed a mechanically responsive bioartificial tissue that responds to mechanical loading to produce a preprogrammed therapeutic biologic drug. By deconstructing the signaling networks induced by activation of the mechanically sensitive ion channel transient receptor potential vanilloid 4 (TRPV4), we created synthetic TRPV4-responsive genetic circuits in chondrocytes. We engineered these cells into living tissues that respond to mechanical loading by producing the anti-inflammatory biologic drug interleukin-1 receptor antagonist. Chondrocyte TRPV4 is activated by osmotic loading and not by direct cellular deformation, suggesting that tissue loading is transduced into an osmotic signal that activates TRPV4. Either osmotic or mechanical loading of tissues transduced with TRPV4-responsive circuits protected constructs from inflammatory degradation by interleukin-1α. This synthetic mechanobiology approach was used to develop a mechanogenetic system to enable long-term, autonomously regulated drug delivery driven by physiologically relevant loading.


Asunto(s)
Productos Biológicos , Canales Catiónicos TRPV , Productos Biológicos/metabolismo , Condrocitos/metabolismo , Redes Reguladoras de Genes , Canales Catiónicos TRPV/metabolismo , Ingeniería de Tejidos
11.
Cartilage ; 13(2_suppl): 1602S-1607S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-31609141

RESUMEN

OBJECTIVES: The utilization of viral vectors to deliver genes of interest directly to meniscus cells and promote long-term modulation of gene expression may prove useful to enhance meniscus repair and regeneration. The objective of this study was to optimize and compare the potential of lentivirus (LV) and adeno-associated virus (AAV) to deliver transgenes to meniscus cells in both intact meniscus tissue and isolated primary cells in monolayer. DESIGN: Porcine meniscus tissue explants and primary meniscus cells in monolayer were transduced with LV or self-complementary AAV2 (scAAV2) encoding green fluorescent protein (GFP). Following transduction, explants were enzymatically digested to isolate meniscus cells, and monolayer cells were trypsinized. Isolated cells were analyzed by flow cytometry to determine percent transduction. RESULTS: LV and scAAV2 showed a high transduction efficiency in monolayer meniscus cells. scAAV2 was most effective at transducing cells within intact meniscus tissue but the efficiency was less than 20%. Outer zone meniscus cells were more readily transduced by both LV and scAAV2 than the inner zone cells. Higher virus titers and higher cell density resulted in improved transduction efficiency. Polybrene was necessary for the highest transduction efficiency with LV, but it reduced scAAV2 transduction. CONCLUSIONS: Both LV and scAAV2 efficiently transduce primary meniscus cells but only scAAV2 can modestly transduce cells embedded in meniscus tissue. This work lays the foundation for viral gene transfer to be utilized to deliver bioactive transgenes or gene editing machinery, which can induce long-term and tunable expression of therapeutic proteins from tissue-engineered constructs for meniscus repair and regeneration.


Asunto(s)
Dependovirus , Menisco , Dependovirus/genética , Dependovirus/metabolismo , Edición Génica , Lentivirus/genética , Ingeniería de Tejidos
12.
J Orthop Res ; 39(10): 2177-2186, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33325039

RESUMEN

Meniscus injuries are common and a major cause of long-term joint degeneration and disability. Current treatment options are limited, so novel regenerative therapies or tissue engineering strategies are urgently needed. The development of new therapies is hindered by a lack of knowledge regarding the cellular biology of the meniscus and a lack of well-established methods for studying meniscus cells in vitro. The goals of this study were to (1) establish baseline expression profiles and dedifferentiation patterns of inner and outer zone primary meniscus cells, and (2) evaluate the utility of poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA) polymer hydrogels to reverse dedifferentiation trends for long-term meniscus cell culture. Using reverse transcription-quantitative polymerase chain reaction, we measured expression levels of putative meniscus phenotype marker genes in freshly isolated meniscus tissue, tissue explant culture, and monolayer culture of inner and outer zone meniscus cells from porcine knees to establish baseline dedifferentiation characteristics, and then compared these expression levels to PEGDA/GelMA embedded passaged meniscus cells. COL1A1 showed robust upregulation, while CHAD, CILP, and COMP showed downregulation with monolayer culture. Expression levels of COL2A1, ACAN, and SOX9 were surprisingly similar between inner and outer zone tissue and were found to be less sensitive as markers of dedifferentiation. When embedded in PEGDA/GelMA hydrogels, expression levels of meniscus cell phenotype genes were significantly modulated by varying the ratio of polymer components, allowing these materials to be tuned for phenotype restoration, meniscus cell culture, and tissue engineering applications.


Asunto(s)
Materiales Biocompatibles , Menisco , Animales , Células Cultivadas , Gelatina , Hidrogeles , Fenotipo , Porcinos , Ingeniería de Tejidos/métodos
13.
Orthop J Sports Med ; 8(12): 2325967120964468, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33330731

RESUMEN

BACKGROUND: Obesity, which potentially increases loading at the knee, is a common and modifiable risk factor for the development of knee osteoarthritis. The menisci play an important role in distributing joint loads to the underlying cartilage. However, the influence of obesity on the role of the menisci in cartilage load distribution in vivo is currently unknown. PURPOSE: To measure tibial cartilage thickness and compressive strain in response to walking in areas covered and uncovered by the menisci in participants with normal body mass index (BMI) and participants with high BMI. STUDY DESIGN: Controlled laboratory study. METHODS: Magnetic resonance (MR) images of the right knees of participants with normal BMI (<25 kg/m2; n = 8) and participants with high BMI (>30 kg/m2; n = 7) were obtained before and after treadmill walking. The outer margins of the tibia, the medial and lateral cartilage surfaces, and the meniscal footprints were segmented on each MR image to create 3-dimensional models of the joint. Cartilage thickness was measured before and after walking in areas covered and uncovered by the menisci. Cartilage compressive strain was then determined from changes in thickness resulting from the walking task. RESULTS: Before exercise, medial and lateral uncovered cartilage of the tibial plateau was significantly thicker than covered cartilage in both BMI groups. In the uncovered region of the lateral tibial plateau, participants with high BMI had thinner preexercise cartilage than those with a normal BMI. Cartilage compressive strain was significantly greater in medial and lateral cartilage in participants with high BMI compared with those with normal BMI in both the regions covered and those uncovered by the menisci. CONCLUSION: Participants with high BMI experienced greater cartilage strain in response to walking than participants with normal BMI in both covered and uncovered regions of cartilage, which may indicate that the load-distributing function of the meniscus is not sufficient to moderate the effects of obesity. CLINICAL RELEVANCE: These findings demonstrate the critical effect of obesity on cartilage function and thickness in regions covered and uncovered by the menisci.

14.
Connect Tissue Res ; 61(3-4): 322-337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31661326

RESUMEN

Purpose: Meniscal injury and loss of meniscus tissue lead to osteoarthritis development. Therefore, novel biologic strategies are needed to enhance meniscus tissue repair. The purpose of this study was to identify a favorable culture medium for both bone marrow-derived mesenchymal stem cells (MSCs) and meniscal tissue, and to establish a novel meniscus tissue defect model that could be utilized for in vitro screening of biologics to promote meniscus repair.Materials and Methods: In parallel, we analyzed the biochemical properties of MSC - seeded meniscus-derived matrix (MDM) scaffolds and meniscus repair model explants cultured in different combinations of serum, dexamethasone (Dex), and TGF-ß. Next, we combined meniscus tissue and MSC-seeded MDM scaffolds into a novel meniscus tissue defect model to evaluate the effects of chondrogenic and meniscal media on the tissue biochemical properties and repair strength.Results: Serum-free medium containing TGF-ß and Dex was the most promising formulation for experiments with MSC-seeded scaffolds, whereas serum-containing medium was the most effective for meniscus tissue composition and integrative repair. When meniscus tissue and MSC-seeded MDM scaffolds were combined into a defect model, the chondrogenic medium (serum-free with TGF-ß and Dex) enhanced the production of proteoglycans and promoted integrative repair of meniscus tissue. As well, cross-linked scaffolds improved repair over the MDM slurry.Conclusions: The meniscal tissue defect model established in this paper can be used to perform in vitro screening to identify and optimize biological treatments to enhance meniscus tissue repair prior to conducting preclinical animal studies.


Asunto(s)
Células de la Médula Ósea , Matriz Extracelular/química , Meniscos Tibiales/química , Células Madre Mesenquimatosas , Modelos Biológicos , Lesiones de Menisco Tibial , Andamios del Tejido/química , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Técnicas de Cultivo de Célula , Femenino , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Porcinos , Lesiones de Menisco Tibial/metabolismo , Lesiones de Menisco Tibial/patología
15.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861690

RESUMEN

Meniscal injuries, particularly in the avascular zone, have a low propensity for healing and are associated with the development of osteoarthritis. Current meniscal repair techniques are limited to specific tear types and have significant risk for failure. In previous work, we demonstrated the ability of meniscus-derived matrix (MDM) scaffolds to augment the integration and repair of an in vitro meniscus defect. The objective of this study was to determine the effects of percent composition and dehydrothermal (DHT) or genipin cross-linking of MDM bioscaffolds on primary meniscus cellular responses and integrative meniscus repair. In all scaffolds, the porous microenvironment allowed for exogenous cell infiltration and proliferation, as well as endogenous meniscus cell migration. The genipin cross-linked scaffolds promoted extracellular matrix (ECM) deposition and/or retention. The shear strength of integrative meniscus repair was improved with increasing percentages of MDM and genipin cross-linking. Overall, the 16% genipin cross-linked scaffolds were most effective at enhancing integrative meniscus repair. The ability of the genipin cross-linked scaffolds to attract endogenous meniscus cells, promote glycosaminoglycan and collagen deposition, and enhance integrative meniscus repair reveals that these MDM scaffolds are promising tools to augment meniscus healing.


Asunto(s)
Matriz Extracelular/metabolismo , Iridoides/farmacología , Menisco/citología , Ingeniería de Tejidos/métodos , Animales , Proliferación Celular , Células Cultivadas , Femenino , Menisco/efectos de los fármacos , Menisco/metabolismo , Resistencia al Corte , Porcinos , Andamios del Tejido
16.
Sci Rep ; 9(1): 8719, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213610

RESUMEN

Meniscal tears have a poor healing capacity, and damage to the meniscus is associated with significant pain, disability, and progressive degenerative changes in the knee joint that lead to osteoarthritis. Therefore, strategies to promote meniscus repair and improve meniscus function are needed. The objective of this study was to generate porcine meniscus-derived matrix (MDM) scaffolds and test their effectiveness in promoting meniscus repair via migration of endogenous meniscus cells from the surrounding meniscus or exogenously seeded human bone marrow-derived mesenchymal stem cells (MSCs). Both endogenous meniscal cells and MSCs infiltrated the MDM scaffolds. In the absence of exogenous cells, the 8% MDM scaffolds promoted the integrative repair of an in vitro meniscal defect. Dehydrothermal crosslinking and concentration of the MDM influenced the biochemical content and shear strength of repair, demonstrating that the MDM can be tailored to promote tissue repair. These findings indicate that native meniscus cells can enhance meniscus healing if a scaffold is provided that promotes cellular infiltration and tissue growth. The high affinity of cells for the MDM and the ability to remodel the scaffold reveals the potential of MDM to integrate with native meniscal tissue to promote long-term repair without necessarily requiring exogenous cells.


Asunto(s)
Matriz Extracelular/metabolismo , Menisco/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Enfermedades de los Cartílagos/fisiopatología , Enfermedades de los Cartílagos/terapia , Células Cultivadas , Matriz Extracelular/ultraestructura , Femenino , Humanos , Traumatismos de la Rodilla/fisiopatología , Traumatismos de la Rodilla/terapia , Menisco/citología , Menisco/ultraestructura , Células Madre Mesenquimatosas/citología , Microscopía Electrónica de Rastreo , Porcinos , Cicatrización de Heridas
17.
Ann Biomed Eng ; 47(1): 190-201, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30288634

RESUMEN

Our objective was to determine the relationship of T1rho and T2 relaxation mapping to the biochemical and biomechanical properties of articular cartilage through selective digestion of proteoglycans and collagens. Femoral condyles were harvested from porcine knee joints and treated with either chondroitinase ABC (cABC) followed by collagenase, or collagenase followed by cABC. Magnetic resonance images were acquired and cartilage explants were harvested for biochemical, biomechanical, and histological analyses before and after each digestion. Targeted enzymatic digestion of proteoglycans with cABC resulted in elevated T1rho relaxation times and decreased sulfated glycosaminoglycan content without affecting T2 relaxation times. In contrast, extractable collagen and T2 relaxation times were increased by collagenase digestion; however, neither was altered by cABC digestion. Aggregate modulus decreased with digestion of both components. Overall, we found that targeted digestion of proteoglycans and collagens had varying effects on biochemical, biomechanical, and imaging properties. T2 relaxation times were altered with changes in extractable collagen, but not changes in proteoglycan. However, T1rho relaxation times were altered with proteoglycan loss, which may also coincide with collagen disruption. Since it is unclear which matrix components are disrupted first in osteoarthritis, both markers may be important for tracking disease progression.


Asunto(s)
Cartílago , Colágeno/química , Fémur , Articulación de la Rodilla , Proteoglicanos/química , Animales , Cartílago/química , Cartílago/diagnóstico por imagen , Femenino , Fémur/química , Fémur/diagnóstico por imagen , Articulación de la Rodilla/química , Articulación de la Rodilla/diagnóstico por imagen , Porcinos
18.
J Orthop Res ; 36(4): 1220-1227, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28906016

RESUMEN

The objective of this study was to investigate the expression of the chemokine CXCL10 and its role in joint tissues following articular fracture. We hypothesized that CXCL10 is upregulated following articular fracture and contributes to cartilage degradation associated with post-traumatic arthritis (PTA). To evaluate CXCL10 expression following articular fracture, gene expression was quantified in synovial tissue from knee joints of C57BL/6 mice that develop PTA following articular fracture, and MRL/MpJ mice that are protected from PTA. CXCL10 protein expression was assessed in human cartilage in normal, osteoarthritic (OA), and post-traumatic tissue using immunohistochemistry. The effects of exogenous CXCL10, alone and in combination with IL-1, on porcine cartilage explants were assessed by quantifying the release of catabolic mediators. Synovial tissue gene expression of CXCL10 was upregulated by joint trauma, peaking one day in C57BL/6 mice (25-fold) versus 3 days post-fracture in MRL/MpJ mice (15-fold). CXCL10 protein in articular cartilage was most highly expressed following trauma compared with normal and OA tissue. In a dose dependent manner, exogenous CXCL10 significantly reduced total matrix metalloproteinase (MMP) and aggrecanase activity of culture media from cartilage explants. CXCL10 also trended toward a reduction in IL-1α-stimulated total MMP activity (p = 0.09) and S-GAG (p = 0.09), but not NO release. In conclusion, CXCL10 was upregulated in synovium and chondrocytes following trauma. However, exogenous CXCL10 did not induce a catabolic response in cartilage. CXCL10 may play a role in modulating the chondrocyte response to inflammatory stimuli associated with joint injury and the progression of PTA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1220-1227, 2018.


Asunto(s)
Artritis/etiología , Cartílago Articular/metabolismo , Quimiocina CXCL10/sangre , Fracturas Intraarticulares/sangre , Membrana Sinovial/metabolismo , Adulto , Anciano , Animales , Artritis/sangre , Cartílago Articular/efectos de los fármacos , Quimiocina CXCL10/farmacología , Femenino , Humanos , Interleucina-1alfa , Traumatismos de la Rodilla/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Porcinos , Regulación hacia Arriba
19.
JCI Insight ; 2(22)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29202453

RESUMEN

While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.


Asunto(s)
Resorción Ósea/metabolismo , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Estrógenos/metabolismo , Osteogénesis/fisiología , Transducción de Señal , Animales , Canales de Calcio Tipo L/genética , Proliferación Celular , Condrocitos/patología , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo II/metabolismo , Estrógenos/genética , Femenino , Fémur/patología , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos , Osteoprotegerina/metabolismo , Ovariectomía
20.
Am J Sports Med ; 45(12): 2817-2823, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28671850

RESUMEN

BACKGROUND: There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. STUDY DESIGN: Descriptive laboratory study. METHODS: Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. RESULTS: Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P < .001). After 20 minutes of walking, all 4 regions experienced significant cartilage thickness decreases ( P < .01). The covered medial region experienced significantly less strain than the uncovered medial region ( P = .04). No difference in strain was detected between the covered and uncovered regions in the lateral compartment ( P = .40). CONCLUSION: In response to walking, cartilage that is covered by the meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.


Asunto(s)
Cartílago Articular/fisiología , Articulación de la Rodilla/fisiología , Meniscos Tibiales/fisiología , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Cartílago Articular/diagnóstico por imagen , Prueba de Esfuerzo , Femenino , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Meniscos Tibiales/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA