Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Intensive Care Med Exp ; 12(1): 24, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441708

RESUMEN

BACKGROUND: Glucocorticoids are commonly used in patients with or at-risk for acute respiratory distress syndrome (ARDS), but optimal use remains unclear despite well-conducted clinical trials. We performed a secondary analysis in patients previously enrolled in the Acute Lung Injury and Biospecimen Repository at the University of Pittsburgh. The primary aim of our study was to investigate early changes in host response biomarkers in response to real-world use of glucocorticoids in patients with acute respiratory failure due to ARDS or at-risk due to a pulmonary insult. Participants had baseline plasma samples obtained on study enrollment and on follow-up 3 to 5 days later to measure markers of innate immunity (IL-6, IL-8, IL-10, TNFr1, ST2, fractalkine), epithelial injury (sRAGE), endothelial injury (angiopoietin-2), and host response to bacterial infections (procalcitonin, pentraxin-3). In our primary analyses, we investigated the effect of receiving glucocorticoids between baseline and follow-up samples on host response biomarkers measured at follow-up by doubly robust inverse probability weighting analysis. In exploratory analyses, we examined associations between glucocorticoid use and previously characterized host response subphenotypes (hyperinflammatory and hypoinflammatory). RESULTS: 67 of 148 participants (45%) received glucocorticoids between baseline and follow-up samples. Dose and type of glucocorticoids varied. Regimens that used hydrocortisone alone were most common (37%), and median daily dose was equivalent to 40 mg methylprednisolone (interquartile range: 21, 67). Participants who received glucocorticoids were more likely to be female, to be on immunosuppressive therapy at baseline, and to have higher baseline levels of ST-2, fractalkine, IL-10, pentraxin-3, sRAGE, and TNFr1. Glucocorticoid use was associated with decreases in IL-6 and increases in fractalkine. In exploratory analyses, glucocorticoid use was more frequent in participants in the hyperinflammatory subphenotype (58% vs 40%, p = 0.05), and was not associated with subphenotype classification at the follow-up time point (p = 0.16). CONCLUSIONS: Glucocorticoid use varied in a cohort of patients with or at-risk for ARDS and was associated with early changes in the systemic host immune response.

2.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38301257

RESUMEN

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Asunto(s)
COVID-19 , Factor 15 de Diferenciación de Crecimiento , Pulmón , Pseudomonas aeruginosa , SARS-CoV-2 , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Humanos , Ratones , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Infecciones por Pseudomonas/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Femenino , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Modelos Animales de Enfermedad
4.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38060312

RESUMEN

Cigarette smoking is associated with a higher risk of ICU admissions among patients with flu. However, the etiological mechanism by which cigarette smoke (CS) exacerbates flu remains poorly understood. Here, we show that a mild dose of influenza A virus promotes a severe lung injury in mice preexposed to CS but not room air for 4 weeks. Real-time intravital (in vivo) lung imaging revealed that the development of acute severe respiratory dysfunction in CS- and flu-exposed mice was associated with the accumulation of platelet-rich neutrophil-platelet aggregates (NPAs) in the lung microcirculation within 2 days following flu infection. These platelet-rich NPAs formed in situ and grew larger over time to occlude the lung microvasculature, leading to the development of pulmonary ischemia followed by the infiltration of NPAs and vascular leakage into the alveolar air space. These findings suggest, for the first time to our knowledge, that an acute onset of platelet-driven thrombo-inflammatory response in the lung contributes to the development of CS-induced severe flu.


Asunto(s)
Fumar Cigarrillos , Neutrófilos , Humanos , Animales , Ratones , Fumar Cigarrillos/efectos adversos , Pulmón , Plaquetas , Productos de Tabaco
6.
Open Forum Infect Dis ; 10(11): ofad538, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023565

RESUMEN

Background: Diagnosis of invasive candidiasis (IC) is limited by insensitivity and slow turnaround of cultures. Our objectives were to define the performance of T2Candida, a nonculture test, under guidance of a diagnostic stewardship program, and evaluate impact on time to antifungal initiation and antifungal utilization. Methods: This was a retrospective study of adult medical intensive care unit (MICU) patients with septic shock for whom T2Candida testing was performed from March 2017 to March 2020. Patients with positive T2Candida results during this period were compared to MICU patients who did not undergo T2Candida testing but had septic shock and blood cultures positive for Candida from January 2016 through March 2020. Results: Overall, 155 T2Candida tests from 143 patients were included. Nine percent of T2Candida tests were positive compared to 4.5% of blood cultures. Sensitivity, specificity, positive predictive value, and negative predictive value of T2Candida for proven and probable IC were 78%, 95%, 50%, and 99%, respectively. Patients who tested positive for T2Candida (n = 14) were diagnosed earlier and initiated on antifungal therapy sooner than patients with IC (n = 14) diagnosed by blood culture alone (median, 5.6 vs 60 hours; P < .0001). Median antifungal days of therapy/1000 patient-days were 23.3/month preimplementation and 15/month postimplementation (P  = .007). Following a negative T2Candida result, empiric antifungals were either not administered in 58% or discontinued within 72 hours in 96% of patients. Conclusions: Diagnostic stewardship guided T2Candida testing resulted in reduced time to IC diagnosis, faster initiation of antifungal therapy, and lower antifungal usage among MICU patients with septic shock.

7.
iScience ; 26(12): 108333, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38034362

RESUMEN

Acute inflammation is heterogeneous in critical illness and predictive of outcome. We hypothesized that genetic variability in novel, yet common, gene variants contributes to this heterogeneity and could stratify patient outcomes. We searched algorithmically for significant differences in systemic inflammatory mediators associated with any of 551,839 SNPs in one derivation (n = 380 patients with blunt trauma) and two validation (n = 75 trauma and n = 537 non-trauma patients) cohorts. This analysis identified rs10404939 in the LYPD4 gene. Trauma patients homozygous for the A allele (rs10404939AA; 27%) had different trajectories of systemic inflammation along with persistently elevated multiple organ dysfunction (MOD) indices vs. patients homozygous for the G allele (rs10404939GG; 26%). rs10404939AA homozygotes in the trauma validation cohort had elevated MOD indices, and non-trauma patients displayed more complex inflammatory networks and worse 90-day survival compared to rs10404939GG homozygotes. Thus, rs10404939 emerged as a common, broadly prognostic SNP in critical illness.

8.
iScience ; 26(11): 108093, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965142

RESUMEN

Secondary infection (SI) diagnosis in severe COVID-19 remains challenging. We correlated metagenomic sequencing of plasma microbial cell-free DNA (mcfDNA-Seq) with clinical SI assessment, immune response, and outcomes. We classified 42 COVID-19 inpatients as microbiologically confirmed-SI (Micro-SI, n = 8), clinically diagnosed-SI (Clinical-SI, n = 13, i.e., empiric antimicrobials), or no-clinical-suspicion-for-SI (No-Suspected-SI, n = 21). McfDNA-Seq was successful in 73% of samples. McfDNA detection was higher in Micro-SI (94%) compared to Clinical-SI (57%, p = 0.03), and unexpectedly high in No-Suspected-SI (83%), similar to Micro-SI. We detected culture-concordant mcfDNA species in 81% of Micro-SI samples. McfDNA correlated with LRT 16S rRNA bacterial burden (r = 0.74, p = 0.02), and biomarkers (white blood cell count, IL-6, IL-8, SPD, all p < 0.05). McfDNA levels were predictive of worse 90-day survival (hazard ratio 1.30 [1.02-1.64] for each log10 mcfDNA, p = 0.03). High mcfDNA levels in COVID-19 patients without clinical SI suspicion may suggest SI under-diagnosis. McfDNA-Seq offers a non-invasive diagnostic tool for pathogen identification, with prognostic value on clinical outcomes.

9.
Res Sq ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37841841

RESUMEN

Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.

10.
N Engl J Med ; 389(25): 2341-2354, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888913

RESUMEN

BACKGROUND: The efficacy of simvastatin in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: In an ongoing international, multifactorial, adaptive platform, randomized, controlled trial, we evaluated simvastatin (80 mg daily) as compared with no statin (control) in critically ill patients with Covid-19 who were not receiving statins at baseline. The primary outcome was respiratory and cardiovascular organ support-free days, assessed on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support through day 21 in survivors; the analyis used a Bayesian hierarchical ordinal model. The adaptive design included prespecified statistical stopping criteria for superiority (>99% posterior probability that the odds ratio was >1) and futility (>95% posterior probability that the odds ratio was <1.2). RESULTS: Enrollment began on October 28, 2020. On January 8, 2023, enrollment was closed on the basis of a low anticipated likelihood that prespecified stopping criteria would be met as Covid-19 cases decreased. The final analysis included 2684 critically ill patients. The median number of organ support-free days was 11 (interquartile range, -1 to 17) in the simvastatin group and 7 (interquartile range, -1 to 16) in the control group; the posterior median adjusted odds ratio was 1.15 (95% credible interval, 0.98 to 1.34) for simvastatin as compared with control, yielding a 95.9% posterior probability of superiority. At 90 days, the hazard ratio for survival was 1.12 (95% credible interval, 0.95 to 1.32), yielding a 91.9% posterior probability of superiority of simvastatin. The results of secondary analyses were consistent with those of the primary analysis. Serious adverse events, such as elevated levels of liver enzymes and creatine kinase, were reported more frequently with simvastatin than with control. CONCLUSIONS: Although recruitment was stopped because cases had decreased, among critically ill patients with Covid-19, simvastatin did not meet the prespecified criteria for superiority to control. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Asunto(s)
COVID-19 , Enfermedad Crítica , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Simvastatina , Humanos , Teorema de Bayes , COVID-19/mortalidad , COVID-19/terapia , Tratamiento Farmacológico de COVID-19 , Enfermedad Crítica/mortalidad , Enfermedad Crítica/terapia , Mortalidad Hospitalaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Simvastatina/uso terapéutico , Resultado del Tratamiento
11.
medRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808745

RESUMEN

Critical illness can disrupt the composition and function of the microbiome, yet comprehensive longitudinal studies are lacking. We conducted a longitudinal analysis of oral, lung, and gut microbiota in a large cohort of 479 mechanically ventilated patients with acute respiratory failure. Progressive dysbiosis emerged in all three body compartments, characterized by reduced alpha diversity, depletion of obligate anaerobe bacteria, and pathogen enrichment. Clinical variables, including chronic obstructive pulmonary disease, immunosuppression, and antibiotic exposure, shaped dysbiosis. Notably, of the three body compartments, unsupervised clusters of lung microbiota diversity and composition independently predicted survival, transcending clinical predictors, organ dysfunction severity, and host-response sub-phenotypes. These independent associations of lung microbiota may serve as valuable biomarkers for prognostication and treatment decisions in critically ill patients. Insights into the dynamics of the microbiome during critical illness highlight the potential for microbiota-targeted interventions in precision medicine.

12.
Res Pract Thromb Haemost ; 7(6): 102167, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37727846

RESUMEN

Background: Acute kidney injury (AKI) in patients with COVID-19 is partly mediated by thromboinflammation. In noncritically ill patients with COVID-19, therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support. Objectives: We investigated whether therapeutic-dose heparin reduces the incidence of AKI or death in noncritically ill patients hospitalized for COVID-19. Methods: We report a prespecified secondary analysis of the ACTIV4a and ATTACC open-label, multiplatform randomized trial of therapeutic-dose heparin vs usual-care pharmacologic thromboprophylaxis on the incidence of severe AKI (≥2-fold increase in serum creatinine or initiation of kidney replacement therapy (KDIGO stage 2 or 3) or all-cause mortality in noncritically ill patients hospitalized for COVID-19. Bayesian statistical models were adjusted for age, sex, D-dimer, enrollment period, country, site, and platform. Results: Among 1922 enrolled, 23 were excluded due to pre-existing end stage kidney disease and 205 were missing baseline or follow-up creatinine measurements. Severe AKI or death occurred in 4.4% participants assigned to therapeutic-dose heparin and 5.5% assigned to thromboprophylaxis (adjusted relative risk [aRR]: 0.72; 95% credible interval (CrI): 0.47, 1.10); the posterior probability of superiority for therapeutic-dose heparin (relative risk < 1.0) was 93.6%. Therapeutic-dose heparin was associated with a 97.7% probability of superiority to reduce the composite of stage 3 AKI or death (3.1% vs 4.6%; aRR: 0.64; 95% CrI: 0.40, 0.99) compared to thromboprophylaxis. Conclusion: Therapeutic-dose heparin was associated with a high probability of superiority to reduce the incidence of in-hospital severe AKI or death in patients hospitalized for COVID-19.

13.
medRxiv ; 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37292915

RESUMEN

Rationale: Disruption of respiratory bacterial communities predicts poor clinical outcomes in critical illness; however, the role of respiratory fungal communities (mycobiome) is poorly understood. Objectives: We investigated whether mycobiota variation in the respiratory tract is associated with host-response and clinical outcomes in critically ill patients. Methods: To characterize the upper and lower respiratory tract mycobiota, we performed rRNA gene sequencing (internal transcribed spacer) of oral swabs and endotracheal aspirates (ETA) from 316 mechanically-ventilated patients. We examined associations of mycobiome profiles (diversity and composition) with clinical variables, host-response biomarkers, and outcomes. Measurements and Main Results: ETA samples with >50% relative abundance for C. albicans (51%) were associated with elevated plasma IL-8 and pentraxin-3 (p=0.05), longer time-to-liberation from mechanical ventilation (p=0.04) and worse 30-day survival (adjusted hazards ratio (adjHR): 1.96 [1.04-3.81], p=0.05). Using unsupervised clustering, we derived two clusters in ETA samples, with Cluster 2 (39%) showing lower alpha diversity (p<0.001) and higher abundance of C. albicans (p<0.001). Cluster 2 was significantly associated with the prognostically adverse hyperinflammatory subphenotype (odds ratio 2.07 [1.03-4.18], p=0.04) and predicted worse survival (adjHR: 1.81 [1.03-3.19], p=0.03). C. albicans abundance in oral swabs was also associated with the hyperinflammatory subphenotype and mortality. Conclusions: Variation in respiratory mycobiota was significantly associated with systemic inflammation and clinical outcomes. C. albicans abundance emerged as a negative predictor in both the upper and lower respiratory tract. The lung mycobiome may play an important role in the biological and clinical heterogeneity among critically ill patients and represent a potential therapeutic target for lung injury in critical illness.

14.
ERJ Open Res ; 9(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37284423

RESUMEN

Current plasma-based subphenotyping approaches in acute respiratory failure represent host responses at a systemic level but do not capture important differences in lower respiratory tract biology https://bit.ly/40kTdDG.

15.
ERJ Open Res ; 9(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37377659

RESUMEN

Background: Effective regulation of complement activation may be crucial to preserving complement function during acute respiratory distress syndrome (ARDS). Factor H is the primary negative regulator of the alternative pathway of complement. We hypothesised that preserved factor H levels are associated with decreased complement activation and reduced mortality during ARDS. Methods: Total alternative pathway function was measured by serum haemolytic assay (AH50) using available samples from the ARDSnet Lisofylline and Respiratory Management of Acute Lung Injury (LARMA) trial (n=218). Factor B and factor H levels were quantified using ELISA using samples from the ARDSnet LARMA and Statins for Acutely Injured Lungs from Sepsis (SAILS) (n=224) trials. Meta-analyses included previously quantified AH50, factor B and factor H values from an observational registry (Acute Lung Injury Registry and Biospecimen Repository (ALIR)). Complement C3, and complement activation products C3a and Ba plasma levels were measured in SAILS. Results: AH50 greater than the median was associated with reduced mortality in meta-analysis of LARMA and ALIR (hazard ratio (HR) 0.66, 95% CI 0.45-0.96). In contrast, patients in the lowest AH50 quartile demonstrated relative deficiency of both factor B and factor H. Relative deficiency of factor B (HR 1.99, 95% CI 1.44-2.75) or factor H (HR 1.52, 95% CI 1.09-2.11) was associated with increased mortality in meta-analysis of LARMA, SAILS and ALIR. Relative factor H deficiency was associated with increased factor consumption, as evidenced by lower factor B and C3 levels and Ba:B and C3a:C3 ratios. Higher factor H levels associated with lower inflammatory markers. Conclusions: Relative factor H deficiency, higher Ba:B and C3a:C3 ratios and lower factor B and C3 levels suggest a subset of ARDS with complement factor exhaustion, impaired alternative pathway function, and increased mortality, that may be amenable to therapeutic targeting.

17.
JAMA Netw Open ; 6(5): e2314428, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37227729

RESUMEN

Importance: Platelet activation is a potential therapeutic target in patients with COVID-19. Objective: To evaluate the effect of P2Y12 inhibition among critically ill patients hospitalized for COVID-19. Design, Setting, and Participants: This international, open-label, adaptive platform, 1:1 randomized clinical trial included critically ill (requiring intensive care-level support) patients hospitalized with COVID-19. Patients were enrolled between February 26, 2021, through June 22, 2022. Enrollment was discontinued on June 22, 2022, by the trial leadership in coordination with the study sponsor given a marked slowing of the enrollment rate of critically ill patients. Intervention: Participants were randomly assigned to receive a P2Y12 inhibitor or no P2Y12 inhibitor (usual care) for 14 days or until hospital discharge, whichever was sooner. Ticagrelor was the preferred P2Y12 inhibitor. Main Outcomes and Measures: The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death and, for participants who survived to hospital discharge, the number of days free of cardiovascular or respiratory organ support up to day 21 of the index hospitalization. The primary safety outcome was major bleeding, as defined by the International Society on Thrombosis and Hemostasis. Results: At the time of trial termination, 949 participants (median [IQR] age, 56 [46-65] years; 603 male [63.5%]) had been randomly assigned, 479 to the P2Y12 inhibitor group and 470 to usual care. In the P2Y12 inhibitor group, ticagrelor was used in 372 participants (78.8%) and clopidogrel in 100 participants (21.2%). The estimated adjusted odds ratio (AOR) for the effect of P2Y12 inhibitor on organ support-free days was 1.07 (95% credible interval, 0.85-1.33). The posterior probability of superiority (defined as an OR > 1.0) was 72.9%. Overall, 354 participants (74.5%) in the P2Y12 inhibitor group and 339 participants (72.4%) in the usual care group survived to hospital discharge (median AOR, 1.15; 95% credible interval, 0.84-1.55; posterior probability of superiority, 80.8%). Major bleeding occurred in 13 participants (2.7%) in the P2Y12 inhibitor group and 13 (2.8%) in the usual care group. The estimated mortality rate at 90 days for the P2Y12 inhibitor group was 25.5% and for the usual care group was 27.0% (adjusted hazard ratio, 0.96; 95% CI, 0.76-1.23; P = .77). Conclusions and Relevance: In this randomized clinical trial of critically ill participants hospitalized for COVID-19, treatment with a P2Y12 inhibitor did not improve the number of days alive and free of cardiovascular or respiratory organ support. The use of the P2Y12 inhibitor did not increase major bleeding compared with usual care. These data do not support routine use of a P2Y12 inhibitor in critically ill patients hospitalized for COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04505774.


Asunto(s)
COVID-19 , Agonistas del Receptor Purinérgico P2Y , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Crítica/terapia , Hemorragia , Mortalidad Hospitalaria , Ticagrelor/uso terapéutico , Agonistas del Receptor Purinérgico P2Y/uso terapéutico
18.
iScience ; 26(6): 106832, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250794

RESUMEN

Uncertainty persists whether anaerobic bacteria represent important pathogens in aspiration pneumonia. In a nested case-control study of mechanically ventilated patients classified as macro-aspiration pneumonia (MAsP, n = 56), non-macro-aspiration pneumonia (NonMAsP, n = 91), and uninfected controls (n = 11), we profiled upper (URT) and lower respiratory tract (LRT) microbiota with bacterial 16S rRNA gene sequencing, measured plasma host-response biomarkers, analyzed bacterial communities by diversity and oxygen requirements, and performed unsupervised clustering with Dirichlet Multinomial Models (DMM). MAsP and NonMAsP patients had indistinguishable microbiota profiles by alpha diversity and oxygen requirements with similar host-response profiles and 60-day survival. Unsupervised DMM clusters revealed distinct bacterial clusters in the URT and LRT, with low-diversity clusters enriched for facultative anaerobes and typical pathogens, associated with higher plasma levels of SPD and sCD14 and worse 60-day survival. The predictive inter-patient variability in these bacterial profiles highlights the importance of microbiome study in patient sub-phenotyping and precision medicine approaches for severe pneumonia.

19.
Microbiome ; 11(1): 117, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37226179

RESUMEN

BACKGROUND: The advent of culture-independent, next-generation DNA sequencing has led to the discovery of distinct lung bacterial communities. Studies of lung microbiome taxonomy often reveal only subtle differences between health and disease, but host recognition and response may distinguish the members of similar bacterial communities in different populations. Magnetic-activated cell sorting has been applied to the gut microbiome to identify the numbers and types of bacteria eliciting a humoral response. We adapted this technique to examine the populations of immunoglobulin-bound bacteria in the lung. METHODS: Sixty-four individuals underwent bronchoalveolar lavage (BAL). We separated immunoglobulin G-bound bacteria using magnetic-activated cell sorting and sequenced the 16S rRNA gene on the Illumina MiSeq platform. We compared microbial sequencing data in IgG-bound bacterial communities compared to raw BAL then examined the differences in individuals with and without HIV as a representative disease state. RESULTS: Immunoglobulin G-bound bacteria were identified in all individuals. The community structure differed when compared to raw BAL, and there was a greater abundance of Pseudomonas and fewer oral bacteria in IgG-bound BAL. Examination of IgG-bound communities in individuals with HIV demonstrated the differences in Ig-bound bacteria by HIV status that were not seen in a comparison of raw BAL, and greater numbers of immunoglobulin-bound bacteria were associated with higher pulmonary cytokine levels. CONCLUSIONS: We report a novel application of magnetic-activated cell sorting to identify immunoglobulin G-bound bacteria in the lung. This technique identified distinct bacterial communities which differed in composition from raw bronchoalveolar lavage, revealing the differences not detected by traditional analyses. Cytokine response was also associated with differential immunoglobulin binding of lung bacteria, suggesting the functional importance of these communities. Video Abstract.


Asunto(s)
Infecciones por VIH , Microbiota , Humanos , ARN Ribosómico 16S/genética , Microbiota/genética , Inmunoglobulina G , Citocinas , Dimercaprol , Fenómenos Magnéticos
20.
Respir Res ; 24(1): 136, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210531

RESUMEN

BACKGROUND: Fatty acid oxidation (FAO) defects have been implicated in experimental models of acute lung injury and associated with poor outcomes in critical illness. In this study, we examined acylcarnitine profiles and 3-methylhistidine as markers of FAO defects and skeletal muscle catabolism, respectively, in patients with acute respiratory failure. We determined whether these metabolites were associated with host-response ARDS subphenotypes, inflammatory biomarkers, and clinical outcomes in acute respiratory failure. METHODS: In a nested case-control cohort study, we performed targeted analysis of serum metabolites of patients intubated for airway protection (airway controls), Class 1 (hypoinflammatory), and Class 2 (hyperinflammatory) ARDS patients (N = 50 per group) during early initiation of mechanical ventilation. Relative amounts were quantified by liquid chromatography high resolution mass spectrometry using isotope-labeled standards and analyzed with plasma biomarkers and clinical data. RESULTS: Of the acylcarnitines analyzed, octanoylcarnitine levels were twofold increased in Class 2 ARDS relative to Class 1 ARDS or airway controls (P = 0.0004 and < 0.0001, respectively) and was positively associated with Class 2 by quantile g-computation analysis (P = 0.004). In addition, acetylcarnitine and 3-methylhistidine were increased in Class 2 relative to Class 1 and positively correlated with inflammatory biomarkers. In all patients within the study with acute respiratory failure, increased 3-methylhistidine was observed in non-survivors at 30 days (P = 0.0018), while octanoylcarnitine was increased in patients requiring vasopressor support but not in non-survivors (P = 0.0001 and P = 0.28, respectively). CONCLUSIONS: This study demonstrates that increased levels of acetylcarnitine, octanoylcarnitine, and 3-methylhistidine distinguish Class 2 from Class 1 ARDS patients and airway controls. Octanoylcarnitine and 3-methylhistidine were associated with poor outcomes in patients with acute respiratory failure across the cohort independent of etiology or host-response subphenotype. These findings suggest a role for serum metabolites as biomarkers in ARDS and poor outcomes in critically ill patients early in the clinical course.


Asunto(s)
Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Acetilcarnitina , Estudios de Casos y Controles , Biomarcadores , Síndrome de Dificultad Respiratoria/diagnóstico , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/complicaciones , Ácidos Grasos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA