Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 62017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28044981

RESUMEN

Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation.


Asunto(s)
Metilación de ADN , Exposición a Riesgos Ambientales , Etnicidad , Hispánicos o Latinos , Epigénesis Genética , Humanos
2.
Genetics ; 205(1): 375-383, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27879348

RESUMEN

Statistical models in medical and population genetics typically assume that individuals assort randomly in a population. While this simplifies model complexity, it contradicts an increasing body of evidence of nonrandom mating in human populations. Specifically, it has been shown that assortative mating is significantly affected by genomic ancestry. In this work, we examine the effects of ancestry-assortative mating on the linkage disequilibrium between local ancestry tracks of individuals in an admixed population. To accomplish this, we develop an extension to the Wright-Fisher model that allows for ancestry-based assortative mating. We show that ancestry-assortment perturbs the distribution of local ancestry linkage disequilibrium (LAD) and the variance of ancestry in a population as a function of the number of generations since admixture. This assortment effect can induce errors in demographic inference of admixed populations when methods assume random mating. We derive closed form formulae for LAD under an assortative-mating model with and without migration. We observe that LAD depends on the correlation of global ancestry of couples in each generation, the migration rate of each of the ancestral populations, the initial proportions of ancestral populations, and the number of generations since admixture. We also present the first direct evidence of ancestry-assortment in African Americans and examine LAD in simulated and real admixed population data of African Americans. We find that demographic inference under the assumption of random mating significantly underestimates the number of generations since admixture, and that accounting for assortative mating using the patterns of LAD results in estimates that more closely agrees with the historical narrative.


Asunto(s)
Negro o Afroamericano/genética , Migración Humana , Desequilibrio de Ligamiento , Modelos Genéticos , Alelos , Conjuntos de Datos como Asunto , Frecuencia de los Genes , Genética de Población/métodos , Genómica/métodos , Humanos , Modelos Estadísticos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...